Volume and File Structure for Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

�Volume and File Structure for Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � ref part_General �1� - General�Part � ref part_Boot �2� - Volume and boot block recognition�Part � ref part_Volume �3� - Volume structure�Part � ref part_File �4� - File structure�Part � ref part_Record �5� - Record structure

�.

�Brief History

This ECMA Standard is a volume and file structure standard for interchanging files and as such, it is a peer to existing volume and file structure standards such as ECMA-107 and ECMA-119. It is rather different from those standards in at least two important ways. Firstly, it offers much more functionality, mainly because of user needs for increased character set support and for more powerful file system features. Secondly, it acknowledges the separate concerns of booting, volume structure and file system structure. Rather than bundling these different functions together, this ECMA Standard carefully segregates these functions into separate parts and describes in detail how those parts fit together. It is expected that future volume and file structure standards will fit into this framework, rather than building other distinct and incompatible formats.

This ECMA Standard consists of five Parts published in one Volume. Part � ref part_General �1� - General - specifies references, definitions, notations and basic structures used in the other four Parts. Part � ref part_Boot �2� - Volume and boot block recognition - specifies formats and system requirements for recognising the volume structures on a medium and booting from a medium. Part � ref part_Volume �3� - Volume structure - specifies how to record various volume-related entities such as volumes, volume sets and logical volumes. Part � ref part_File �4� - File structure - specifies how to record and interpret files, both file data and file attributes, and file hierarchies within logical volumes. Part � ref part_Record �5� - Record structure - specifies how to record and interpret file data encoded as records.

This ECMA Standard has been adopted by the ECMA General Assembly of June 1997.

�Table of Contents

	Part/Page

� toc \o 1-3 \s Part \d “/” \f \b G_TOC_A_three�Part 1: General

1 Scope	� GOTOBUTTON _Toc385315684 � SEQ Part _Toc385315684 * ARABIC �1�/� PAGEREF _Toc385315684 �1��

2 Parts references	� GOTOBUTTON _Toc385315685 � SEQ Part _Toc385315685 * ARABIC �1�/� PAGEREF _Toc385315685 �1��

3 Conformance	� GOTOBUTTON _Toc385315686 � SEQ Part _Toc385315686 * ARABIC �1�/� PAGEREF _Toc385315686 �1��

3.1 Conformance of a medium	� GOTOBUTTON _Toc385315687 � SEQ Part _Toc385315687 * ARABIC �1�/� PAGEREF _Toc385315687 �1��

3.2 Conformance of an information processing system	� GOTOBUTTON _Toc385315688 � SEQ Part _Toc385315688 * ARABIC �1�/� PAGEREF _Toc385315688 �1��

4 References	� GOTOBUTTON _Toc385315689 � SEQ Part _Toc385315689 * ARABIC �1�/� PAGEREF _Toc385315689 �2��

5 Definitions	� GOTOBUTTON _Toc385315690 � SEQ Part _Toc385315690 * ARABIC �1�/� PAGEREF _Toc385315690 �2��

5.1 application	� GOTOBUTTON _Toc385315691 � SEQ Part _Toc385315691 * ARABIC �1�/� PAGEREF _Toc385315691 �2��

5.2 byte	� GOTOBUTTON _Toc385315692 � SEQ Part _Toc385315692 * ARABIC �1�/� PAGEREF _Toc385315692 �2��

5.3 descriptor	� GOTOBUTTON _Toc385315693 � SEQ Part _Toc385315693 * ARABIC �1�/� PAGEREF _Toc385315693 �2��

5.4 file	� GOTOBUTTON _Toc385315694 � SEQ Part _Toc385315694 * ARABIC �1�/� PAGEREF _Toc385315694 �2��

5.5 implementation	� GOTOBUTTON _Toc385315695 � SEQ Part _Toc385315695 * ARABIC �1�/� PAGEREF _Toc385315695 �2��

5.6 originating system	� GOTOBUTTON _Toc385315696 � SEQ Part _Toc385315696 * ARABIC �1�/� PAGEREF _Toc385315696 �2��

5.7 receiving system	� GOTOBUTTON _Toc385315697 � SEQ Part _Toc385315697 * ARABIC �1�/� PAGEREF _Toc385315697 �2��

5.8 record	� GOTOBUTTON _Toc385315698 � SEQ Part _Toc385315698 * ARABIC �1�/� PAGEREF _Toc385315698 �3��

5.9 sector	� GOTOBUTTON _Toc385315699 � SEQ Part _Toc385315699 * ARABIC �1�/� PAGEREF _Toc385315699 �3��

5.10 standard for recording	� GOTOBUTTON _Toc385315700 � SEQ Part _Toc385315700 * ARABIC �1�/� PAGEREF _Toc385315700 �3��

5.11 user	� GOTOBUTTON _Toc385315701 � SEQ Part _Toc385315701 * ARABIC �1�/� PAGEREF _Toc385315701 �3��

5.12 volume	� GOTOBUTTON _Toc385315702 � SEQ Part _Toc385315702 * ARABIC �1�/� PAGEREF _Toc385315702 �3��

5.13 volume set	� GOTOBUTTON _Toc385315703 � SEQ Part _Toc385315703 * ARABIC �1�/� PAGEREF _Toc385315703 �3��

6 Notation	� GOTOBUTTON _Toc385315704 � SEQ Part _Toc385315704 * ARABIC �1�/� PAGEREF _Toc385315704 �3��

6.1 Numerical notation	� GOTOBUTTON _Toc385315705 � SEQ Part _Toc385315705 * ARABIC �1�/� PAGEREF _Toc385315705 �3��

6.1.1 Decimal notation	� GOTOBUTTON _Toc385315706 � SEQ Part _Toc385315706 * ARABIC �1�/� PAGEREF _Toc385315706 �3��

6.1.2 Hexadecimal notation	� GOTOBUTTON _Toc385315707 � SEQ Part _Toc385315707 * ARABIC �1�/� PAGEREF _Toc385315707 �4��

6.2 Bit fields	� GOTOBUTTON _Toc385315708 � SEQ Part _Toc385315708 * ARABIC �1�/� PAGEREF _Toc385315708 �4��

6.3 Descriptor formats	� GOTOBUTTON _Toc385315709 � SEQ Part _Toc385315709 * ARABIC �1�/� PAGEREF _Toc385315709 �4��

6.4 Character strings	� GOTOBUTTON _Toc385315710 � SEQ Part _Toc385315710 * ARABIC �1�/� PAGEREF _Toc385315710 �5��

6.5 Arithmetic notation	� GOTOBUTTON _Toc385315711 � SEQ Part _Toc385315711 * ARABIC �1�/� PAGEREF _Toc385315711 �5��

6.6 Schema	� GOTOBUTTON _Toc385315712 � SEQ Part _Toc385315712 * ARABIC �1�/� PAGEREF _Toc385315712 �5��

6.7 Other notations	� GOTOBUTTON _Toc385315713 � SEQ Part _Toc385315713 * ARABIC �1�/� PAGEREF _Toc385315713 �6��

7 Basic types	� GOTOBUTTON _Toc385315714 � SEQ Part _Toc385315714 * ARABIC �1�/� PAGEREF _Toc385315714 �6��

7.1 Numerical values	� GOTOBUTTON _Toc385315715 � SEQ Part _Toc385315715 * ARABIC �1�/� PAGEREF _Toc385315715 �6��

7.1.1 8-bit unsigned numerical values	� GOTOBUTTON _Toc385315716 � SEQ Part _Toc385315716 * ARABIC �1�/� PAGEREF _Toc385315716 �6��

7.1.2 8-bit signed numerical values	� GOTOBUTTON _Toc385315717 � SEQ Part _Toc385315717 * ARABIC �1�/� PAGEREF _Toc385315717 �6��

7.1.3 16-bit unsigned numerical values	� GOTOBUTTON _Toc385315718 � SEQ Part _Toc385315718 * ARABIC �1�/� PAGEREF _Toc385315718 �6��

7.1.4 16-bit signed numerical values	� GOTOBUTTON _Toc385315719 � SEQ Part _Toc385315719 * ARABIC �1�/� PAGEREF _Toc385315719 �7��

7.1.5 32-bit unsigned numerical values	� GOTOBUTTON _Toc385315720 � SEQ Part _Toc385315720 * ARABIC �1�/� PAGEREF _Toc385315720 �7��

7.1.6 32-bit signed numerical values	� GOTOBUTTON _Toc385315721 � SEQ Part _Toc385315721 * ARABIC �1�/� PAGEREF _Toc385315721 �7��

7.1.7 64-bit unsigned numerical values	� GOTOBUTTON _Toc385315722 � SEQ Part _Toc385315722 * ARABIC �1�/� PAGEREF _Toc385315722 �7��

7.2 Character sets and coding	� GOTOBUTTON _Toc385315723 � SEQ Part _Toc385315723 * ARABIC �1�/� PAGEREF _Toc385315723 �7��

7.2.1 Character set specification	� GOTOBUTTON _Toc385315724 � SEQ Part _Toc385315724 * ARABIC �1�/� PAGEREF _Toc385315724 �8��

7.2.2 CS0 character set	� GOTOBUTTON _Toc385315725 � SEQ Part _Toc385315725 * ARABIC �1�/� PAGEREF _Toc385315725 �9��

7.2.3 CS1 character set	� GOTOBUTTON _Toc385315726 � SEQ Part _Toc385315726 * ARABIC �1�/� PAGEREF _Toc385315726 �9��

7.2.4 CS2 character set	� GOTOBUTTON _Toc385315727 � SEQ Part _Toc385315727 * ARABIC �1�/� PAGEREF _Toc385315727 �9��

7.2.5 CS3 character set	� GOTOBUTTON _Toc385315728 � SEQ Part _Toc385315728 * ARABIC �1�/� PAGEREF _Toc385315728 �9��

7.2.6 CS4 character set	� GOTOBUTTON _Toc385315729 � SEQ Part _Toc385315729 * ARABIC �1�/� PAGEREF _Toc385315729 �10��

7.2.7 CS5 character set	� GOTOBUTTON _Toc385315730 � SEQ Part _Toc385315730 * ARABIC �1�/� PAGEREF _Toc385315730 �10��

7.2.8 CS6 character set	� GOTOBUTTON _Toc385315731 � SEQ Part _Toc385315731 * ARABIC �1�/� PAGEREF _Toc385315731 �10��

7.2.9 CS7 character set	� GOTOBUTTON _Toc385315732 � SEQ Part _Toc385315732 * ARABIC �1�/� PAGEREF _Toc385315732 �10��

7.2.10 CS8 character set	� GOTOBUTTON _Toc385315733 � SEQ Part _Toc385315733 * ARABIC �1�/� PAGEREF _Toc385315733 �10��

7.2.11 List of character sets	� GOTOBUTTON _Toc385315734 � SEQ Part _Toc385315734 * ARABIC �1�/� PAGEREF _Toc385315734 �11��

7.2.12 Fixed-length character fields	� GOTOBUTTON _Toc385315735 � SEQ Part _Toc385315735 * ARABIC �1�/� PAGEREF _Toc385315735 �11��

�

� toc \o 1-2 \s Part \d “/” \f \b G_TOC_B_two�7.3 Timestamp	� GOTOBUTTON _Toc385315736 � SEQ Part _Toc385315736 * ARABIC �1�/� PAGEREF _Toc385315736 �11��

7.4 Entity identifier	� GOTOBUTTON _Toc385315737 � SEQ Part _Toc385315737 * ARABIC �1�/� PAGEREF _Toc385315737 �12��

�

� toc \o 1-3 \s Part \d “/” \f \b B_TOC_A_three�Part 2 : Volume and Boot Block Recognition

Section 1 - General

1 Scope	� GOTOBUTTON _Toc385315738 � SEQ Part _Toc385315738 * ARABIC �2�/� PAGEREF _Toc385315738 �1��

2 Parts references	� GOTOBUTTON _Toc385315739 � SEQ Part _Toc385315739 * ARABIC �2�/� PAGEREF _Toc385315739 �1��

3 Part interface	� GOTOBUTTON _Toc385315740 � SEQ Part _Toc385315740 * ARABIC �2�/� PAGEREF _Toc385315740 �1��

3.1 Input	� GOTOBUTTON _Toc385315741 � SEQ Part _Toc385315741 * ARABIC �2�/� PAGEREF _Toc385315741 �1��

3.2 Output	� GOTOBUTTON _Toc385315742 � SEQ Part _Toc385315742 * ARABIC �2�/� PAGEREF _Toc385315742 �1��

4 Conformance	� GOTOBUTTON _Toc385315743 � SEQ Part _Toc385315743 * ARABIC �2�/� PAGEREF _Toc385315743 �1��

5 Definitions	� GOTOBUTTON _Toc385315744 � SEQ Part _Toc385315744 * ARABIC �2�/� PAGEREF _Toc385315744 �1��

5.1 extent	� GOTOBUTTON _Toc385315745 � SEQ Part _Toc385315745 * ARABIC �2�/� PAGEREF _Toc385315745 �1��

6 Notation	� GOTOBUTTON _Toc385315746 � SEQ Part _Toc385315746 * ARABIC �2�/� PAGEREF _Toc385315746 �1��

7 Basic types	� GOTOBUTTON _Toc385315747 � SEQ Part _Toc385315747 * ARABIC �2�/� PAGEREF _Toc385315747 �2��

Section 2 - Requirements for the medium for volume and boot block recognition

8 Volume recognition	� GOTOBUTTON _Toc385315748 � SEQ Part _Toc385315748 * ARABIC �2�/� PAGEREF _Toc385315748 �3��

8.1 Arrangement of data on a volume	� GOTOBUTTON _Toc385315749 � SEQ Part _Toc385315749 * ARABIC �2�/� PAGEREF _Toc385315749 �3��

8.1.1 Sector numbers	� GOTOBUTTON _Toc385315750 � SEQ Part _Toc385315750 * ARABIC �2�/� PAGEREF _Toc385315750 �3��

8.2 Volume recognition space	� GOTOBUTTON _Toc385315751 � SEQ Part _Toc385315751 * ARABIC �2�/� PAGEREF _Toc385315751 �3��

8.3 Volume recognition area	� GOTOBUTTON _Toc385315752 � SEQ Part _Toc385315752 * ARABIC �2�/� PAGEREF _Toc385315752 �3��

8.3.1 Volume recognition sequence	� GOTOBUTTON _Toc385315753 � SEQ Part _Toc385315753 * ARABIC �2�/� PAGEREF _Toc385315753 �3��

8.4 Recording of descriptors	� GOTOBUTTON _Toc385315754 � SEQ Part _Toc385315754 * ARABIC �2�/� PAGEREF _Toc385315754 �4��

�

� toc \o 1-2 \s Part \d “/” \f \b B_TOC_B_two�9 Volume recognition structures	� GOTOBUTTON _Toc385315755 � SEQ Part _Toc385315755 * ARABIC �2�/� PAGEREF _Toc385315755 �4��

9.1 Volume Structure Descriptor	� GOTOBUTTON _Toc385315756 � SEQ Part _Toc385315756 * ARABIC �2�/� PAGEREF _Toc385315756 �4��

9.2 Beginning Extended Area Descriptor	� GOTOBUTTON _Toc385315757 � SEQ Part _Toc385315757 * ARABIC �2�/� PAGEREF _Toc385315757 �5��

9.3 Terminating Extended Area Descriptor	� GOTOBUTTON _Toc385315758 � SEQ Part _Toc385315758 * ARABIC �2�/� PAGEREF _Toc385315758 �5��

9.4 Boot Descriptor	� GOTOBUTTON _Toc385315759 � SEQ Part _Toc385315759 * ARABIC �2�/� PAGEREF _Toc385315759 �6��

10 Levels of medium interchange	� GOTOBUTTON _Toc385315760 � SEQ Part _Toc385315760 * ARABIC �2�/� PAGEREF _Toc385315760 �8��

10.1 Level 1	� GOTOBUTTON _Toc385315761 � SEQ Part _Toc385315761 * ARABIC �2�/� PAGEREF _Toc385315761 �8��

10.2 Level 2	� GOTOBUTTON _Toc385315762 � SEQ Part _Toc385315762 * ARABIC �2�/� PAGEREF _Toc385315762 �8��

Section 3 - Requirements for systems for volume and boot block recognition

11 Requirements for the description of systems	� GOTOBUTTON _Toc385315763 � SEQ Part _Toc385315763 * ARABIC �2�/� PAGEREF _Toc385315763 �9��

�

� toc \o 1-3 \s Part \d “/” \f \b B_TOC_C_three�12 Requirements for an originating system	� GOTOBUTTON _Toc385315764 � SEQ Part _Toc385315764 * ARABIC �2�/� PAGEREF _Toc385315764 �9��

12.1 General	� GOTOBUTTON _Toc385315765 � SEQ Part _Toc385315765 * ARABIC �2�/� PAGEREF _Toc385315765 �9��

12.2 Optional access by user	� GOTOBUTTON _Toc385315766 � SEQ Part _Toc385315766 * ARABIC �2�/� PAGEREF _Toc385315766 �9��

12.2.1 Descriptors	� GOTOBUTTON _Toc385315767 � SEQ Part _Toc385315767 * ARABIC �2�/� PAGEREF _Toc385315767 �9��

13 Requirements for a receiving system	� GOTOBUTTON _Toc385315768 � SEQ Part _Toc385315768 * ARABIC �2�/� PAGEREF _Toc385315768 �9��

13.1 General	� GOTOBUTTON _Toc385315769 � SEQ Part _Toc385315769 * ARABIC �2�/� PAGEREF _Toc385315769 �9��

13.2 Optional access by user	� GOTOBUTTON _Toc385315770 � SEQ Part _Toc385315770 * ARABIC �2�/� PAGEREF _Toc385315770 �9��

13.2.1 Descriptors	� GOTOBUTTON _Toc385315771 � SEQ Part _Toc385315771 * ARABIC �2�/� PAGEREF _Toc385315771 �9��

Annex A: Changes from ECMA 167/2	� GOTOBUTTON _Toc385315772 � SEQ Part _Toc385315772 * ARABIC �2�/� PAGEREF _Toc385315772 �10��

�

� toc \o 1-2 \s Part \d “/” \f \b V_TOC_A_two�Part 3 : Volume Structure

Section 1 - General

1 Scope	� GOTOBUTTON _Toc385315773 � SEQ Part _Toc385315773 * ARABIC �3�/� PAGEREF _Toc385315773 �1��

2 Parts references	� GOTOBUTTON _Toc385315774 � SEQ Part _Toc385315774 * ARABIC �3�/� PAGEREF _Toc385315774 �1��

3 Part interface	� GOTOBUTTON _Toc385315775 � SEQ Part _Toc385315775 * ARABIC �3�/� PAGEREF _Toc385315775 �1��

3.1 Input	� GOTOBUTTON _Toc385315776 � SEQ Part _Toc385315776 * ARABIC �3�/� PAGEREF _Toc385315776 �1��

3.2 Output	� GOTOBUTTON _Toc385315777 � SEQ Part _Toc385315777 * ARABIC �3�/� PAGEREF _Toc385315777 �1��

4 Conformance	� GOTOBUTTON _Toc385315778 � SEQ Part _Toc385315778 * ARABIC �3�/� PAGEREF _Toc385315778 �2��

5 Definitions	� GOTOBUTTON _Toc385315779 � SEQ Part _Toc385315779 * ARABIC �3�/� PAGEREF _Toc385315779 �2��

5.1 anchor point	� GOTOBUTTON _Toc385315780 � SEQ Part _Toc385315780 * ARABIC �3�/� PAGEREF _Toc385315780 �2��

5.2 Cyclic Redundancy Check (CRC)	� GOTOBUTTON _Toc385315781 � SEQ Part _Toc385315781 * ARABIC �3�/� PAGEREF _Toc385315781 �2��

5.3 extent	� GOTOBUTTON _Toc385315782 � SEQ Part _Toc385315782 * ARABIC �3�/� PAGEREF _Toc385315782 �2��

5.4 logical block	� GOTOBUTTON _Toc385315783 � SEQ Part _Toc385315783 * ARABIC �3�/� PAGEREF _Toc385315783 �2��

5.5 logical sector	� GOTOBUTTON _Toc385315784 � SEQ Part _Toc385315784 * ARABIC �3�/� PAGEREF _Toc385315784 �2��

5.6 logical volume	� GOTOBUTTON _Toc385315785 � SEQ Part _Toc385315785 * ARABIC �3�/� PAGEREF _Toc385315785 �2��

5.7 partition	� GOTOBUTTON _Toc385315786 � SEQ Part _Toc385315786 * ARABIC �3�/� PAGEREF _Toc385315786 �2��

6 Notation	� GOTOBUTTON _Toc385315787 � SEQ Part _Toc385315787 * ARABIC �3�/� PAGEREF _Toc385315787 �2��

7 Basic types	� GOTOBUTTON _Toc385315788 � SEQ Part _Toc385315788 * ARABIC �3�/� PAGEREF _Toc385315788 �3��

7.1 Extent Descriptor	� GOTOBUTTON _Toc385315789 � SEQ Part _Toc385315789 * ARABIC �3�/� PAGEREF _Toc385315789 �3��

7.2 Descriptor tag	� GOTOBUTTON _Toc385315790 � SEQ Part _Toc385315790 * ARABIC �3�/� PAGEREF _Toc385315790 �3��

Section 2 - Requirements for the medium for volume structure

�

� toc \o 1-3 \s Part \d “/” \f \b V_TOC_B_three�8 Volume structure	� GOTOBUTTON _Toc385315791 � SEQ Part _Toc385315791 * ARABIC �3�/� PAGEREF _Toc385315791 �6��

8.1 Arrangement of information on a volume	� GOTOBUTTON _Toc385315792 � SEQ Part _Toc385315792 * ARABIC �3�/� PAGEREF _Toc385315792 �6��

8.1.1 Sector numbers	� GOTOBUTTON _Toc385315793 � SEQ Part _Toc385315793 * ARABIC �3�/� PAGEREF _Toc385315793 �6��

8.1.2 Logical sector	� GOTOBUTTON _Toc385315794 � SEQ Part _Toc385315794 * ARABIC �3�/� PAGEREF _Toc385315794 �6��

8.2 Volume space	� GOTOBUTTON _Toc385315795 � SEQ Part _Toc385315795 * ARABIC �3�/� PAGEREF _Toc385315795 �6��

8.3 Volume descriptors	� GOTOBUTTON _Toc385315796 � SEQ Part _Toc385315796 * ARABIC �3�/� PAGEREF _Toc385315796 �6��

8.4 Volume Descriptor Sequence	� GOTOBUTTON _Toc385315797 � SEQ Part _Toc385315797 * ARABIC �3�/� PAGEREF _Toc385315797 �7��

8.4.1 Contents of a Volume Descriptor Sequence	� GOTOBUTTON _Toc385315798 � SEQ Part _Toc385315798 * ARABIC �3�/� PAGEREF _Toc385315798 �7��

8.4.2 Recording of the Volume Descriptor Sequence	� GOTOBUTTON _Toc385315799 � SEQ Part _Toc385315799 * ARABIC �3�/� PAGEREF _Toc385315799 �7��

8.4.3 Prevailing descriptors	� GOTOBUTTON _Toc385315800 � SEQ Part _Toc385315800 * ARABIC �3�/� PAGEREF _Toc385315800 �8��

8.4.4 Recording of descriptors	� GOTOBUTTON _Toc385315801 � SEQ Part _Toc385315801 * ARABIC �3�/� PAGEREF _Toc385315801 �9��

8.5 Allocation of the volume space	� GOTOBUTTON _Toc385315802 � SEQ Part _Toc385315802 * ARABIC �3�/� PAGEREF _Toc385315802 �9��

8.6 Volume set	� GOTOBUTTON _Toc385315803 � SEQ Part _Toc385315803 * ARABIC �3�/� PAGEREF _Toc385315803 �9��

8.7 Partition	� GOTOBUTTON _Toc385315804 � SEQ Part _Toc385315804 * ARABIC �3�/� PAGEREF _Toc385315804 �9��

8.8 Logical volume	� GOTOBUTTON _Toc385315805 � SEQ Part _Toc385315805 * ARABIC �3�/� PAGEREF _Toc385315805 �10��

8.8.1 Logical blocks	� GOTOBUTTON _Toc385315806 � SEQ Part _Toc385315806 * ARABIC �3�/� PAGEREF _Toc385315806 �10��

8.8.2 Logical volume integrity	� GOTOBUTTON _Toc385315807 � SEQ Part _Toc385315807 * ARABIC �3�/� PAGEREF _Toc385315807 �10��

�

� toc \o 1-2 \s Part \d “/” \f \b V_TOC_C_two�9 Volume recognition structures	� GOTOBUTTON _Toc385315808 � SEQ Part _Toc385315808 * ARABIC �3�/� PAGEREF _Toc385315808 �11��

9.1 NSR Descriptor	� GOTOBUTTON _Toc385315809 � SEQ Part _Toc385315809 * ARABIC �3�/� PAGEREF _Toc385315809 �11��

10 Volume data structures	� GOTOBUTTON _Toc385315810 � SEQ Part _Toc385315810 * ARABIC �3�/� PAGEREF _Toc385315810 �12��

10.1 Primary Volume Descriptor	� GOTOBUTTON _Toc385315811 � SEQ Part _Toc385315811 * ARABIC �3�/� PAGEREF _Toc385315811 �12��

10.2 Anchor Volume Descriptor Pointer	� GOTOBUTTON _Toc385315812 � SEQ Part _Toc385315812 * ARABIC �3�/� PAGEREF _Toc385315812 �15��

10.3 Volume Descriptor Pointer	� GOTOBUTTON _Toc385315813 � SEQ Part _Toc385315813 * ARABIC �3�/� PAGEREF _Toc385315813 �15��

10.4 Implementation Use Volume Descriptor	� GOTOBUTTON _Toc385315814 � SEQ Part _Toc385315814 * ARABIC �3�/� PAGEREF _Toc385315814 �16��

10.5 Partition Descriptor	� GOTOBUTTON _Toc385315815 � SEQ Part _Toc385315815 * ARABIC �3�/� PAGEREF _Toc385315815 �17��

10.6 Logical Volume Descriptor	� GOTOBUTTON _Toc385315816 � SEQ Part _Toc385315816 * ARABIC �3�/� PAGEREF _Toc385315816 �19��

�

� toc \o 1-3 \s Part \d “/” \f \b V_TOC_D_three�10.7 Partition maps	� GOTOBUTTON _Toc385315817 � SEQ Part _Toc385315817 * ARABIC �3�/� PAGEREF _Toc385315817 �21��

10.7.1 Generic partition map	� GOTOBUTTON _Toc385315818 � SEQ Part _Toc385315818 * ARABIC �3�/� PAGEREF _Toc385315818 �21��

10.7.2 Type 1 Partition Map	� GOTOBUTTON _Toc385315819 � SEQ Part _Toc385315819 * ARABIC �3�/� PAGEREF _Toc385315819 �21��

10.7.3 Type 2 Partition Map	� GOTOBUTTON _Toc385315820 � SEQ Part _Toc385315820 * ARABIC �3�/� PAGEREF _Toc385315820 �22��

�

� toc \o 1-2 \s Part \d “/” \f \b V_TOC_E_two�10.8 Unallocated Space Descriptor	� GOTOBUTTON _Toc385315821 � SEQ Part _Toc385315821 * ARABIC �3�/� PAGEREF _Toc385315821 �22��

10.9 Terminating Descriptor	� GOTOBUTTON _Toc385315822 � SEQ Part _Toc385315822 * ARABIC �3�/� PAGEREF _Toc385315822 �23��

10.10 Logical Volume Integrity Descriptor	� GOTOBUTTON _Toc385315823 � SEQ Part _Toc385315823 * ARABIC �3�/� PAGEREF _Toc385315823 �23��

11 Levels of medium interchange	� GOTOBUTTON _Toc385315824 � SEQ Part _Toc385315824 * ARABIC �3�/� PAGEREF _Toc385315824 �25��

11.1 Level 1	� GOTOBUTTON _Toc385315825 � SEQ Part _Toc385315825 * ARABIC �3�/� PAGEREF _Toc385315825 �25��

11.2 Level 2	� GOTOBUTTON _Toc385315826 � SEQ Part _Toc385315826 * ARABIC �3�/� PAGEREF _Toc385315826 �26��

11.3 Level 3	� GOTOBUTTON _Toc385315827 � SEQ Part _Toc385315827 * ARABIC �3�/� PAGEREF _Toc385315827 �26��

Section 3 - Requirements for systems for volume structure

12 Requirements for the description of systems	� GOTOBUTTON _Toc385315828 � SEQ Part _Toc385315828 * ARABIC �3�/� PAGEREF _Toc385315828 �27��

�

� toc \o 1-3 \s Part \d “/” \f \b V_TOC_F_three�13 Requirements for an originating system	� GOTOBUTTON _Toc385315829 � SEQ Part _Toc385315829 * ARABIC �3�/� PAGEREF _Toc385315829 �27��

13.1 General	� GOTOBUTTON _Toc385315830 � SEQ Part _Toc385315830 * ARABIC �3�/� PAGEREF _Toc385315830 �27��

13.2 Mandatory access by user	� GOTOBUTTON _Toc385315831 � SEQ Part _Toc385315831 * ARABIC �3�/� PAGEREF _Toc385315831 �27��

13.2.1 Descriptors	� GOTOBUTTON _Toc385315832 � SEQ Part _Toc385315832 * ARABIC �3�/� PAGEREF _Toc385315832 �27��

13.3 Optional access by user	� GOTOBUTTON _Toc385315833 � SEQ Part _Toc385315833 * ARABIC �3�/� PAGEREF _Toc385315833 �28��

13.3.1 Descriptors	� GOTOBUTTON _Toc385315834 � SEQ Part _Toc385315834 * ARABIC �3�/� PAGEREF _Toc385315834 �28��

13.3.2 Multivolume volume sets	� GOTOBUTTON _Toc385315835 � SEQ Part _Toc385315835 * ARABIC �3�/� PAGEREF _Toc385315835 �28��

14 Requirements for a receiving system	� GOTOBUTTON _Toc385315836 � SEQ Part _Toc385315836 * ARABIC �3�/� PAGEREF _Toc385315836 �29��

14.1 General	� GOTOBUTTON _Toc385315837 � SEQ Part _Toc385315837 * ARABIC �3�/� PAGEREF _Toc385315837 �29��

14.2 Mandatory access by user	� GOTOBUTTON _Toc385315838 � SEQ Part _Toc385315838 * ARABIC �3�/� PAGEREF _Toc385315838 �29��

14.2.1 Descriptors	� GOTOBUTTON _Toc385315839 � SEQ Part _Toc385315839 * ARABIC �3�/� PAGEREF _Toc385315839 �29��

Annex A: Changes from ECMA 167/2	� GOTOBUTTON _Toc385315840 � SEQ Part _Toc385315840 * ARABIC �3�/� PAGEREF _Toc385315840 �30��

�

� toc \o 1-2 \s Part \d “/” \f \b F_TOC_A_two�Part 4 : File structure

Section 1 - General

1 Scope	� GOTOBUTTON _Toc385315841 � SEQ Part _Toc385315841 * ARABIC �4�/� PAGEREF _Toc385315841 �1��

2 Parts references	� GOTOBUTTON _Toc385315842 � SEQ Part _Toc385315842 * ARABIC �4�/� PAGEREF _Toc385315842 �1��

3 Part interface	� GOTOBUTTON _Toc385315843 � SEQ Part _Toc385315843 * ARABIC �4�/� PAGEREF _Toc385315843 �1��

3.1 Input	� GOTOBUTTON _Toc385315844 � SEQ Part _Toc385315844 * ARABIC �4�/� PAGEREF _Toc385315844 �1��

3.2 Output	� GOTOBUTTON _Toc385315845 � SEQ Part _Toc385315845 * ARABIC �4�/� PAGEREF _Toc385315845 �2��

4 Conformance	� GOTOBUTTON _Toc385315846 � SEQ Part _Toc385315846 * ARABIC �4�/� PAGEREF _Toc385315846 �2��

5 Definitions	� GOTOBUTTON _Toc385315847 � SEQ Part _Toc385315847 * ARABIC �4�/� PAGEREF _Toc385315847 �2��

5.1 extent	� GOTOBUTTON _Toc385315848 � SEQ Part _Toc385315848 * ARABIC �4�/� PAGEREF _Toc385315848 �2��

5.2 file set	� GOTOBUTTON _Toc385315849 � SEQ Part _Toc385315849 * ARABIC �4�/� PAGEREF _Toc385315849 �2��

5.3 group ID	� GOTOBUTTON _Toc385315850 � SEQ Part _Toc385315850 * ARABIC �4�/� PAGEREF _Toc385315850 �2��

5.4 logical block	� GOTOBUTTON _Toc385315851 � SEQ Part _Toc385315851 * ARABIC �4�/� PAGEREF _Toc385315851 �2��

5.5 logical volume	� GOTOBUTTON _Toc385315852 � SEQ Part _Toc385315852 * ARABIC �4�/� PAGEREF _Toc385315852 �2��

5.6 partition	� GOTOBUTTON _Toc385315853 � SEQ Part _Toc385315853 * ARABIC �4�/� PAGEREF _Toc385315853 �2��

5.7 stream	� GOTOBUTTON _Toc385315854 � SEQ Part _Toc385315854 * ARABIC �4�/� PAGEREF _Toc385315854 �3��

5.8 user ID	� GOTOBUTTON _Toc385315855 � SEQ Part _Toc385315855 * ARABIC �4�/� PAGEREF _Toc385315855 �3��

6 Notation	� GOTOBUTTON _Toc385315856 � SEQ Part _Toc385315856 * ARABIC �4�/� PAGEREF _Toc385315856 �3��

7 Basic types	� GOTOBUTTON _Toc385315857 � SEQ Part _Toc385315857 * ARABIC �4�/� PAGEREF _Toc385315857 �3��

7.1 Recorded address	� GOTOBUTTON _Toc385315858 � SEQ Part _Toc385315858 * ARABIC �4�/� PAGEREF _Toc385315858 �3��

7.2 Descriptor Tag	� GOTOBUTTON _Toc385315859 � SEQ Part _Toc385315859 * ARABIC �4�/� PAGEREF _Toc385315859 �3��

Section 2 - Requirements for the medium for file structure

�

� toc \o 1-3 \s Part \d “/” \f \b F_TOC_B_three�8 File structure	� GOTOBUTTON _Toc385315860 � SEQ Part _Toc385315860 * ARABIC �4�/� PAGEREF _Toc385315860 �6��

8.1 Volume set	� GOTOBUTTON _Toc385315861 � SEQ Part _Toc385315861 * ARABIC �4�/� PAGEREF _Toc385315861 �6��

8.2 Arrangement of information on a volume set	� GOTOBUTTON _Toc385315862 � SEQ Part _Toc385315862 * ARABIC �4�/� PAGEREF _Toc385315862 �6��

8.3 Arrangement of information on a logical volume	� GOTOBUTTON _Toc385315863 � SEQ Part _Toc385315863 * ARABIC �4�/� PAGEREF _Toc385315863 �6��

8.3.1 File Set Descriptor Sequence	� GOTOBUTTON _Toc385315864 � SEQ Part _Toc385315864 * ARABIC �4�/� PAGEREF _Toc385315864 �6��

8.4 Arrangement of information on a partition	� GOTOBUTTON _Toc385315865 � SEQ Part _Toc385315865 * ARABIC �4�/� PAGEREF _Toc385315865 �6��

8.5 File set	� GOTOBUTTON _Toc385315866 � SEQ Part _Toc385315866 * ARABIC �4�/� PAGEREF _Toc385315866 �7��

8.6 Directories	� GOTOBUTTON _Toc385315867 � SEQ Part _Toc385315867 * ARABIC �4�/� PAGEREF _Toc385315867 �7��

8.6.1 Order of directory descriptors	� GOTOBUTTON _Toc385315868 � SEQ Part _Toc385315868 * ARABIC �4�/� PAGEREF _Toc385315868 �8��

8.6.2 Directory hierarchy size restrictions	� GOTOBUTTON _Toc385315869 � SEQ Part _Toc385315869 * ARABIC �4�/� PAGEREF _Toc385315869 �8��

8.7 Pathname	� GOTOBUTTON _Toc385315870 � SEQ Part _Toc385315870 * ARABIC �4�/� PAGEREF _Toc385315870 �8��

8.7.1 Resolved pathname	� GOTOBUTTON _Toc385315871 � SEQ Part _Toc385315871 * ARABIC �4�/� PAGEREF _Toc385315871 �8��

8.8 Files	� GOTOBUTTON _Toc385315872 � SEQ Part _Toc385315872 * ARABIC �4�/� PAGEREF _Toc385315872 �9��

8.8.1 Attributes of a file	� GOTOBUTTON _Toc385315873 � SEQ Part _Toc385315873 * ARABIC �4�/� PAGEREF _Toc385315873 �9��

8.8.2 Data space of a file	� GOTOBUTTON _Toc385315874 � SEQ Part _Toc385315874 * ARABIC �4�/� PAGEREF _Toc385315874 �10��

8.8.3 Streams of a File	� GOTOBUTTON _Toc385315875 � SEQ Part _Toc385315875 * ARABIC �4�/� PAGEREF _Toc385315875 �10��

8.9 Record structure	� GOTOBUTTON _Toc385315876 � SEQ Part _Toc385315876 * ARABIC �4�/� PAGEREF _Toc385315876 �10��

8.10 Information Control Block (ICB)	� GOTOBUTTON _Toc385315877 � SEQ Part _Toc385315877 * ARABIC �4�/� PAGEREF _Toc385315877 �11��

8.10.1 ICB hierarchy	� GOTOBUTTON _Toc385315878 � SEQ Part _Toc385315878 * ARABIC �4�/� PAGEREF _Toc385315878 �11��

9 Additional File Data	� GOTOBUTTON _Toc385315879 � SEQ Part _Toc385315879 * ARABIC �4�/� PAGEREF _Toc385315879 �12��

9.1 Extended attributes	� GOTOBUTTON _Toc385315880 � SEQ Part _Toc385315880 * ARABIC �4�/� PAGEREF _Toc385315880 �12��

9.2 Stream Directory	� GOTOBUTTON _Toc385315881 � SEQ Part _Toc385315881 * ARABIC �4�/� PAGEREF _Toc385315881 �13��

10 Partition space management	� GOTOBUTTON _Toc385315882 � SEQ Part _Toc385315882 * ARABIC �4�/� PAGEREF _Toc385315882 �14��

10.1 Space sets	� GOTOBUTTON _Toc385315883 � SEQ Part _Toc385315883 * ARABIC �4�/� PAGEREF _Toc385315883 �14��

11 Partition integrity	� GOTOBUTTON _Toc385315884 � SEQ Part _Toc385315884 * ARABIC �4�/� PAGEREF _Toc385315884 �14��

12 Allocation descriptors	� GOTOBUTTON _Toc385315885 � SEQ Part _Toc385315885 * ARABIC �4�/� PAGEREF _Toc385315885 �15��

12.1 Description of Files	� GOTOBUTTON _Toc385315886 � SEQ Part _Toc385315886 * ARABIC �4�/� PAGEREF _Toc385315886 �15��

13 Recording of descriptors	� GOTOBUTTON _Toc385315887 � SEQ Part _Toc385315887 * ARABIC �4�/� PAGEREF _Toc385315887 �16��

�

� toc \o 1-2 \s Part \d “/” \f \b F_TOC_C_two�14 File Data Structures	� GOTOBUTTON _Toc385315888 � SEQ Part _Toc385315888 * ARABIC �4�/� PAGEREF _Toc385315888 �16��

14.1 File Set Descriptor	� GOTOBUTTON _Toc385315889 � SEQ Part _Toc385315889 * ARABIC �4�/� PAGEREF _Toc385315889 �16��

14.2 Terminating Descriptor	� GOTOBUTTON _Toc385315890 � SEQ Part _Toc385315890 * ARABIC �4�/� PAGEREF _Toc385315890 �19��

14.3 Partition Header Descriptor	� GOTOBUTTON _Toc385315891 � SEQ Part _Toc385315891 * ARABIC �4�/� PAGEREF _Toc385315891 �20��

14.4 File Identifier Descriptor	� GOTOBUTTON _Toc385315892 � SEQ Part _Toc385315892 * ARABIC �4�/� PAGEREF _Toc385315892 �20��

14.5 Allocation Extent Descriptor	� GOTOBUTTON _Toc385315893 � SEQ Part _Toc385315893 * ARABIC �4�/� PAGEREF _Toc385315893 �23��

14.6 ICB Tag	� GOTOBUTTON _Toc385315894 � SEQ Part _Toc385315894 * ARABIC �4�/� PAGEREF _Toc385315894 �23��

14.7 Indirect Entry	� GOTOBUTTON _Toc385315895 � SEQ Part _Toc385315895 * ARABIC �4�/� PAGEREF _Toc385315895 �27��

14.8 Terminal Entry	� GOTOBUTTON _Toc385315896 � SEQ Part _Toc385315896 * ARABIC �4�/� PAGEREF _Toc385315896 �27��

14.9 File Entry	� GOTOBUTTON _Toc385315897 � SEQ Part _Toc385315897 * ARABIC �4�/� PAGEREF _Toc385315897 �27��

�

� toc \o 1-3 \s Part \d “/” \f \b F_TOC_D_three�14.10 Extended Attributes	� GOTOBUTTON _Toc385315898 � SEQ Part _Toc385315898 * ARABIC �4�/� PAGEREF _Toc385315898 �33��

14.10.1 Extended Attribute Header Descriptor	� GOTOBUTTON _Toc385315899 � SEQ Part _Toc385315899 * ARABIC �4�/� PAGEREF _Toc385315899 �34��

14.10.2 Generic format	� GOTOBUTTON _Toc385315900 � SEQ Part _Toc385315900 * ARABIC �4�/� PAGEREF _Toc385315900 �34��

14.10.3 Character Set Information	� GOTOBUTTON _Toc385315901 � SEQ Part _Toc385315901 * ARABIC �4�/� PAGEREF _Toc385315901 �35��

14.10.4 Alternate Permissions	� GOTOBUTTON _Toc385315902 � SEQ Part _Toc385315902 * ARABIC �4�/� PAGEREF _Toc385315902 �36��

14.10.5 File Times Extended Attribute	� GOTOBUTTON _Toc385315903 � SEQ Part _Toc385315903 * ARABIC �4�/� PAGEREF _Toc385315903 �39��

14.10.6 Information Times Extended Attribute	� GOTOBUTTON _Toc385315904 � SEQ Part _Toc385315904 * ARABIC �4�/� PAGEREF _Toc385315904 �40��

14.10.7 Device Specification	� GOTOBUTTON _Toc385315905 � SEQ Part _Toc385315905 * ARABIC �4�/� PAGEREF _Toc385315905 �41��

14.10.8 Implementation Use Extended Attribute	� GOTOBUTTON _Toc385315906 � SEQ Part _Toc385315906 * ARABIC �4�/� PAGEREF _Toc385315906 �43��

14.10.9 Application Use Extended Attribute	� GOTOBUTTON _Toc385315907 � SEQ Part _Toc385315907 * ARABIC �4�/� PAGEREF _Toc385315907 �43��

�

� toc \o 1-2 \s Part \d “/” \f \b F_TOC_E_two�14.11 Unallocated Space Entry	� GOTOBUTTON _Toc385315908 � SEQ Part _Toc385315908 * ARABIC �4�/� PAGEREF _Toc385315908 �44��

14.12 Space Bitmap Descriptor	� GOTOBUTTON _Toc385315909 � SEQ Part _Toc385315909 * ARABIC �4�/� PAGEREF _Toc385315909 �45��

14.13 Partition Integrity Entry	� GOTOBUTTON _Toc385315910 � SEQ Part _Toc385315910 * ARABIC �4�/� PAGEREF _Toc385315910 �46��

�

� toc \o 1-3 \s Part \d “/” \f \b F_TOC_F_three�14.14 Allocation descriptors	� GOTOBUTTON _Toc385315911 � SEQ Part _Toc385315911 * ARABIC �4�/� PAGEREF _Toc385315911 �47��

14.14.1 Short Allocation Descriptor	� GOTOBUTTON _Toc385315912 � SEQ Part _Toc385315912 * ARABIC �4�/� PAGEREF _Toc385315912 �47��

14.14.2 Long Allocation Descriptor	� GOTOBUTTON _Toc385315913 � SEQ Part _Toc385315913 * ARABIC �4�/� PAGEREF _Toc385315913 �47��

14.14.3 Extended Allocation Descriptor	� GOTOBUTTON _Toc385315914 � SEQ Part _Toc385315914 * ARABIC �4�/� PAGEREF _Toc385315914 �48��

�

� toc \o 1-2 \s Part \d “/” \f \b F_TOC_G_two�14.15 Logical Volume Header Descriptor	� GOTOBUTTON _Toc385315915 � SEQ Part _Toc385315915 * ARABIC �4�/� PAGEREF _Toc385315915 �49��

14.16 Pathname	� GOTOBUTTON _Toc385315916 � SEQ Part _Toc385315916 * ARABIC �4�/� PAGEREF _Toc385315916 �49��

14.17 Extended File Entry	� GOTOBUTTON _Toc385315917 � SEQ Part _Toc385315917 * ARABIC �4�/� PAGEREF _Toc385315917 �51��

�

� toc \o 1-3 \s Part \d “/” \f \b F_TOC_H_three�15 Levels of medium interchange	� GOTOBUTTON _Toc385315918 � SEQ Part _Toc385315918 * ARABIC �4�/� PAGEREF _Toc385315918 �53��

15.1 Level 1	� GOTOBUTTON _Toc385315919 � SEQ Part _Toc385315919 * ARABIC �4�/� PAGEREF _Toc385315919 �53��

15.2 Level 2	� GOTOBUTTON _Toc385315920 � SEQ Part _Toc385315920 * ARABIC �4�/� PAGEREF _Toc385315920 �54��

15.3 Level 3	� GOTOBUTTON _Toc385315921 � SEQ Part _Toc385315921 * ARABIC �4�/� PAGEREF _Toc385315921 �54��

Section 3 - Requirements for systems for file structure

16 Requirements for the description of systems	� GOTOBUTTON _Toc385315922 � SEQ Part _Toc385315922 * ARABIC �4�/� PAGEREF _Toc385315922 �55��

17 Requirements for an originating system	� GOTOBUTTON _Toc385315923 � SEQ Part _Toc385315923 * ARABIC �4�/� PAGEREF _Toc385315923 �55��

17.1 General	� GOTOBUTTON _Toc385315924 � SEQ Part _Toc385315924 * ARABIC �4�/� PAGEREF _Toc385315924 �55��

17.2 Mandatory access by user	� GOTOBUTTON _Toc385315925 � SEQ Part _Toc385315925 * ARABIC �4�/� PAGEREF _Toc385315925 �55��

17.2.1 Files	� GOTOBUTTON _Toc385315926 � SEQ Part _Toc385315926 * ARABIC �4�/� PAGEREF _Toc385315926 �55��

17.2.2 File set	� GOTOBUTTON _Toc385315927 � SEQ Part _Toc385315927 * ARABIC �4�/� PAGEREF _Toc385315927 �55��

17.2.3 Descriptors	� GOTOBUTTON _Toc385315928 � SEQ Part _Toc385315928 * ARABIC �4�/� PAGEREF _Toc385315928 �55��

17.3 Optional access by user	� GOTOBUTTON _Toc385315929 � SEQ Part _Toc385315929 * ARABIC �4�/� PAGEREF _Toc385315929 �56��

17.3.1 Records	� GOTOBUTTON _Toc385315930 � SEQ Part _Toc385315930 * ARABIC �4�/� PAGEREF _Toc385315930 �57��

17.3.2 File types	� GOTOBUTTON _Toc385315931 � SEQ Part _Toc385315931 * ARABIC �4�/� PAGEREF _Toc385315931 �57��

17.3.3 Permissions	� GOTOBUTTON _Toc385315932 � SEQ Part _Toc385315932 * ARABIC �4�/� PAGEREF _Toc385315932 �57��

17.4 Restrictions	� GOTOBUTTON _Toc385315933 � SEQ Part _Toc385315933 * ARABIC �4�/� PAGEREF _Toc385315933 �57��

17.4.1 Multivolume volume sets	� GOTOBUTTON _Toc385315934 � SEQ Part _Toc385315934 * ARABIC �4�/� PAGEREF _Toc385315934 �57��

17.4.2 Record length	� GOTOBUTTON _Toc385315935 � SEQ Part _Toc385315935 * ARABIC �4�/� PAGEREF _Toc385315935 �57��

17.4.3 File Times	� GOTOBUTTON _Toc385315936 � SEQ Part _Toc385315936 * ARABIC �4�/� PAGEREF _Toc385315936 �57��

17.4.4 Information Times	� GOTOBUTTON _Toc385315937 � SEQ Part _Toc385315937 * ARABIC �4�/� PAGEREF _Toc385315937 �58��

17.4.5 Alternate Permissions	� GOTOBUTTON _Toc385315938 � SEQ Part _Toc385315938 * ARABIC �4�/� PAGEREF _Toc385315938 �58��

18 Requirements for a receiving system	� GOTOBUTTON _Toc385315939 � SEQ Part _Toc385315939 * ARABIC �4�/� PAGEREF _Toc385315939 �58��

18.1 General	� GOTOBUTTON _Toc385315940 � SEQ Part _Toc385315940 * ARABIC �4�/� PAGEREF _Toc385315940 �58��

18.2 Files	� GOTOBUTTON _Toc385315941 � SEQ Part _Toc385315941 * ARABIC �4�/� PAGEREF _Toc385315941 �58��

18.2.1 File types	� GOTOBUTTON _Toc385315942 � SEQ Part _Toc385315942 * ARABIC �4�/� PAGEREF _Toc385315942 �58��

18.2.2 Permissions	� GOTOBUTTON _Toc385315943 � SEQ Part _Toc385315943 * ARABIC �4�/� PAGEREF _Toc385315943 �58��

18.3 Mandatory access by user	� GOTOBUTTON _Toc385315944 � SEQ Part _Toc385315944 * ARABIC �4�/� PAGEREF _Toc385315944 �58��

18.3.1 Descriptors	� GOTOBUTTON _Toc385315945 � SEQ Part _Toc385315945 * ARABIC �4�/� PAGEREF _Toc385315945 �58��

18.4 Restrictions	� GOTOBUTTON _Toc385315946 � SEQ Part _Toc385315946 * ARABIC �4�/� PAGEREF _Toc385315946 �59��

18.4.1 Record length	� GOTOBUTTON _Toc385315947 � SEQ Part _Toc385315947 * ARABIC �4�/� PAGEREF _Toc385315947 �59��

18.4.2 File Times	� GOTOBUTTON _Toc385315948 � SEQ Part _Toc385315948 * ARABIC �4�/� PAGEREF _Toc385315948 �59��

18.4.3 Information Times	� GOTOBUTTON _Toc385315949 � SEQ Part _Toc385315949 * ARABIC �4�/� PAGEREF _Toc385315949 �59��

18.4.4 Alternate Permissions	� GOTOBUTTON _Toc385315950 � SEQ Part _Toc385315950 * ARABIC �4�/� PAGEREF _Toc385315950 �59��

Annex A - ICB Strategies	� GOTOBUTTON _Toc385315951 � SEQ Part _Toc385315951 * ARABIC �4�/� PAGEREF _Toc385315951 �60��

Annex B: Changes from ECMA 167/2	� GOTOBUTTON _Toc385315952 � SEQ Part _Toc385315952 * ARABIC �4�/� PAGEREF _Toc385315952 �64��

�

� toc \o 1-3 \s Part \d “/” \f \b R_TOC_A_three�Part 5: Record structure

Section 1 - General

1 Scope	� GOTOBUTTON _Toc385315953 � SEQ Part _Toc385315953 * ARABIC �5�/� PAGEREF _Toc385315953 �1��

2 Parts references	� GOTOBUTTON _Toc385315954 � SEQ Part _Toc385315954 * ARABIC �5�/� PAGEREF _Toc385315954 �1��

3 Part interface	� GOTOBUTTON _Toc385315955 � SEQ Part _Toc385315955 * ARABIC �5�/� PAGEREF _Toc385315955 �1��

3.1 Input	� GOTOBUTTON _Toc385315956 � SEQ Part _Toc385315956 * ARABIC �5�/� PAGEREF _Toc385315956 �1��

3.2 Output	� GOTOBUTTON _Toc385315957 � SEQ Part _Toc385315957 * ARABIC �5�/� PAGEREF _Toc385315957 �1��

4 Reference	� GOTOBUTTON _Toc385315958 � SEQ Part _Toc385315958 * ARABIC �5�/� PAGEREF _Toc385315958 �1��

5 Conformance	� GOTOBUTTON _Toc385315959 � SEQ Part _Toc385315959 * ARABIC �5�/� PAGEREF _Toc385315959 �1��

6 Definitions	� GOTOBUTTON _Toc385315960 � SEQ Part _Toc385315960 * ARABIC �5�/� PAGEREF _Toc385315960 �1��

6.1 Data space of a file	� GOTOBUTTON _Toc385315961 � SEQ Part _Toc385315961 * ARABIC �5�/� PAGEREF _Toc385315961 �1��

7 Notation	� GOTOBUTTON _Toc385315962 � SEQ Part _Toc385315962 * ARABIC �5�/� PAGEREF _Toc385315962 �2��

8 Basic types	� GOTOBUTTON _Toc385315963 � SEQ Part _Toc385315963 * ARABIC �5�/� PAGEREF _Toc385315963 �2��

8.1 16-bit unsigned numerical values (MSB)	� GOTOBUTTON _Toc385315964 � SEQ Part _Toc385315964 * ARABIC �5�/� PAGEREF _Toc385315964 �2��

Section 2 - Requirements for the medium for record structure

9 Record structure	� GOTOBUTTON _Toc385315965 � SEQ Part _Toc385315965 * ARABIC �5�/� PAGEREF _Toc385315965 �3��

9.1 Relationship to a file	� GOTOBUTTON _Toc385315966 � SEQ Part _Toc385315966 * ARABIC �5�/� PAGEREF _Toc385315966 �3��

9.2 Record type	� GOTOBUTTON _Toc385315967 � SEQ Part _Toc385315967 * ARABIC �5�/� PAGEREF _Toc385315967 �3��

9.2.1 Padded fixed-length records	� GOTOBUTTON _Toc385315968 � SEQ Part _Toc385315968 * ARABIC �5�/� PAGEREF _Toc385315968 �3��

9.2.2 Fixed-length records	� GOTOBUTTON _Toc385315969 � SEQ Part _Toc385315969 * ARABIC �5�/� PAGEREF _Toc385315969 �4��

9.2.3 Variable-length records	� GOTOBUTTON _Toc385315970 � SEQ Part _Toc385315970 * ARABIC �5�/� PAGEREF _Toc385315970 �4��

9.2.4 Stream-print records	� GOTOBUTTON _Toc385315971 � SEQ Part _Toc385315971 * ARABIC �5�/� PAGEREF _Toc385315971 �5��

9.2.5 Stream-LF records	� GOTOBUTTON _Toc385315972 � SEQ Part _Toc385315972 * ARABIC �5�/� PAGEREF _Toc385315972 �6��

9.2.6 Stream-CR records	� GOTOBUTTON _Toc385315973 � SEQ Part _Toc385315973 * ARABIC �5�/� PAGEREF _Toc385315973 �6��

9.2.7 Stream-CRLF records	� GOTOBUTTON _Toc385315974 � SEQ Part _Toc385315974 * ARABIC �5�/� PAGEREF _Toc385315974 �6��

9.2.8 Stream-LFCR records	� GOTOBUTTON _Toc385315975 � SEQ Part _Toc385315975 * ARABIC �5�/� PAGEREF _Toc385315975 �6��

9.3 Record display attributes	� GOTOBUTTON _Toc385315976 � SEQ Part _Toc385315976 * ARABIC �5�/� PAGEREF _Toc385315976 �7��

9.3.1 LF-CR display attribute	� GOTOBUTTON _Toc385315977 � SEQ Part _Toc385315977 * ARABIC �5�/� PAGEREF _Toc385315977 �7��

9.3.2 First byte position display attribute	� GOTOBUTTON _Toc385315978 � SEQ Part _Toc385315978 * ARABIC �5�/� PAGEREF _Toc385315978 �7��

9.3.3 Implied display attribute	� GOTOBUTTON _Toc385315979 � SEQ Part _Toc385315979 * ARABIC �5�/� PAGEREF _Toc385315979 �7��

Section 3 - Requirements for systems for record structure

10 Requirements for the description of systems	� GOTOBUTTON _Toc385315980 � SEQ Part _Toc385315980 * ARABIC �5�/� PAGEREF _Toc385315980 �8��

11 Requirements for an originating system	� GOTOBUTTON _Toc385315981 � SEQ Part _Toc385315981 * ARABIC �5�/� PAGEREF _Toc385315981 �8��

11.1 General	� GOTOBUTTON _Toc385315982 � SEQ Part _Toc385315982 * ARABIC �5�/� PAGEREF _Toc385315982 �8��

11.1.1 Files	� GOTOBUTTON _Toc385315983 � SEQ Part _Toc385315983 * ARABIC �5�/� PAGEREF _Toc385315983 �8��

11.1.2 Record length	� GOTOBUTTON _Toc385315984 � SEQ Part _Toc385315984 * ARABIC �5�/� PAGEREF _Toc385315984 �8��

12 Requirements for a receiving system	� GOTOBUTTON _Toc385315985 � SEQ Part _Toc385315985 * ARABIC �5�/� PAGEREF _Toc385315985 �8��

12.1 General	� GOTOBUTTON _Toc385315986 � SEQ Part _Toc385315986 * ARABIC �5�/� PAGEREF _Toc385315986 �8��

12.1.1 Files	� GOTOBUTTON _Toc385315987 � SEQ Part _Toc385315987 * ARABIC �5�/� PAGEREF _Toc385315987 �8��

12.1.2 Record length	� GOTOBUTTON _Toc385315988 � SEQ Part _Toc385315988 * ARABIC �5�/� PAGEREF _Toc385315988 �8��

�

�Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � SEQ Part * ARABIC �1�: General

�� tc � ref part_General_long �Part 1: General� \n �

Scope

�xe "scope"�This ECMA Standard specifies a format and associated system requirements�xe "requirements"� for volume and boot block�xe "boot block"� recognition, volume structure, file structure�xe "file structure"� and record�xe "record"� structure for the interchange�xe "interchange"� of information on media between users of information processing systems.

The media shall be recorded as if the recording of sectors may be done in any order.

Note �SEQ Note \r 1 *MERGEFORMAT�1�

The medium is not restricted to being of only one type; the type of medium may be either write once, or read only, or rewritable, or a combination of these types.

This ECMA Standard consists of the following five Parts:

Part � REF part_General * MERGEFORMAT �1�: General

Part � ref part_Boot �2�: Volume and Boot Block�xe "boot block"� Recognition

Part � ref part_Volume �3�: Volume Structure

Part � ref part_File �4�: File Structure

Part � ref part_Record �5�: Record�xe "record"� Structure

Annex A - ICB�xe "ICB"� Strategies, is part of Part � ref part_File �4�.

Part � REF part_General * MERGEFORMAT �1� specifies references, definitions, notation�xe "notation"� and basic structures that apply to the other four Parts.

Parts references

The first digit of a reference within this ECMA Standard identifies the Part, e.g. 2/5 refers to clause 5 in Part 2, and figure 4/3 refers to figure 3 in Part � ref part_File �4�.

Conformance

Conformance of a medium

�xe "conformance"�A medium shall be in conformance with this ECMA Standard when it conforms to a standard for recording (see � REF part_General * MERGEFORMAT �1�/� ref Gstandard_for_recording \n �5.10�) and information recorded on sectors of the medium conform to the specifications of Part � REF part_General * MERGEFORMAT �1� and one or more of Parts � ref part_Boot * mergeformat�2�, � ref part_Volume * mergeformat�3�, � ref part_File * mergeformat�4� and � ref part_Record * mergeformat�5�. A statement of conformance shall identify the sectors of the medium on which information is recorded according to the specifications of this ECMA Standard, and the Parts and the levels of medium interchange�xe "interchange"� (see � ref part_Boot * mergeformat�2�/� ref Blevels_of_medium_interchange \n * mergeformat�10�, � ref part_Volume * mergeformat�3�/� ref Vlevels_of_medium_interchange \n * mergeformat �11�, and � ref part_File * mergeformat �4�/� ref Flevels_of_medium_interchange \n * mergeformat �15�) to which the contents of those sectors of the medium conform.

Conformance of an information processing system

An information processing system shall be in conformance with this ECMA Standard if it meets the requirements�xe "requirements"� specified in Part � REF part_General * MERGEFORMAT �1� and one or more of Parts � ref part_Boot * mergeformat �2�, � ref part_Volume * mergeformat �3�, � ref part_File * mergeformat �4� and � ref part_Record * mergeformat �5� either for an originating system (see � ref part_Boot * mergeformat �2�/� ref Brequirements_Originating * mergeformat \n �12�, � ref part_Volume * mergeformat �3�/� ref Vrequirements_Originating * mergeformat \n �13�, � ref part_File * mergeformat �4�/� ref Frequirements_Originating * mergeformat \n �17� and � ref part_Record * mergeformat �5�/� ref Rrequirements_Originating * mergeformat \n �11�) or for a receiving system (see � ref part_Boot * mergeformat �2�/� ref Brequirements_Receiving * mergeformat \n �13�, � ref part_Volume * mergeformat �3�/� ref Vrequirements_Receiving * mergeformat \n �14�, � ref part_File * mergeformat �4�/� ref FRequirements_Receiving * mergeformat \n �18� and � ref part_Record * mergeformat �5�/� ref Rrequirements_Receiving * mergeformat \n �12�) or for both types of system. A statement of conformance shall identify the Parts, and the levels of the requirements for each of those Parts, which can be met by the system.

References

�xe "references"�ECMA-6	7-Bit Coded Character�xe "character:coded"� Set�xe "character set"� (1991)�xe "interchange"�

ECMA-35	�xe "ISO 2022"�Code Extension Techniques (1994)

ECMA-48	Control Functions for Coded Character Sets (1991)

ECMA-94	8-Bit Single-Byte Coded Graphic Character Sets - Latin Alphabets No. 1 to No. 4 (1986)

ECMA-107	Volume and File Structure of Flexible Disk Cartridges for Information Interchange (1995)�xe "interchange"�

ECMA-119	Volume and File Structure of CDROM for Information Interchange (1987)�xe "interchange"�

ECMA-167/2	Volume and File Structure for Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange, 2nd Edition, December 1994

ECMA-168	Volume and File Structure for Read-Only and Write-Once Compact Disk Media for Information Interchange (1994).

ISO/IEC 13800:1996	Information Technology - Procedure for the registration of identifiers and attributes for volume and file structure

Definitions

For the purpose of this ECMA Standard, the following definitions apply.

application

�xe "application"�A program that processes the contents of a file, and may also process selected attribute data relating to the file or to the volume(s) on which the file is recorded.

byte

A string of eight binary digits operated upon as a unit. If the standard for recording (see � REF part_General * MERGEFORMAT �1�/� ref Gstandard_for_recording \n �5.10�) specifies that the container for the recording of a byte has more than eight bits, in this ECMA Standard a byte shall be recorded in the least significant eight bits of the container with the remaining bits of the container set to ZERO.

descriptor

A structure containing descriptive information about a volume or a file.

file

A collection of information.

implementation

A set of processes which enable an information processing system to behave as an originating system�xe "system:originating"�, or as a receiving system�xe "system:receiving"�, or as both types of system.

originating system

An information processing system which can create a set of files on a volume set�xe "volume set"� for the purpose of data interchange�xe "interchange"� with another system.

receiving system

An information processing system which can read a set of files from a volume set�xe "volume set"� which has been created by another system for the purpose of data interchange�xe "interchange"�.

record

A sequence of bytes treated as a unit of information.�xe "record"�

sector

The data field of the smallest addressable part of the medium that can be accessed independently of other addressable parts of the medium.�xe "sector"�

standard for recording

A standard that specifies the recording method and the addressing method for the information recorded on a medium. The specifications of the standard for recording that are relevant for this ECMA Standard are:

a unique�xe "unique"� address for each sector�xe "sector"�;

the length of each sector�xe "sector"�;

the means for determining whether a sector�xe "sector"� is read-only, write-once, or rewritable;

for media where sectors may only be recorded once, a means for detecting whether each sector�xe "sector"� has not yet been recorded;

whether sectors may require preprocessing prior to recording.

The standard for recording used in conjunction with this ECMA Standard is subject to agreement between the originator and recipient of the medium.

user

A person or other entity (for example, an application�xe "application"�) that causes the invocation of the services provided by an implementation.

volume

A sector�xe "sector"� address space as specified in the relevant standard for recording.

Note �SEQ Note *MERGEFORMAT�2�

A medium usually has a single set of sector�xe "sector"� addresses, and is therefore a single volume. A medium may have a separate set of addresses for each side of the medium, and is therefore two volumes.

volume set

A collection of one or more volumes with identical volume set�xe "volume set"� identification.

Notation

The following notation is used in this ECMA Standard:

Numerical notation

Decimal notation

�xe "notation"�Numbers in decimal notation are represented by decimal digits.

Hexadecimal notation

Numbers in hexadecimal notation are represented as a sequence of one or more hexadecimal digits prefixed by “#”:

hexadecimal digit�0�1�2�3�4�5�6�7�8�9�A�B�C�D�E�F��decimal value�0�1�2�3�4�5�6�7�8�9�10�11�12�13�14�15��Bit fields

�xe "bit field"�Certain fields containing an integral value, or parts of fields containing an integral value, are intended to be interpreted as an array of bits. This array of bits shall be referred to as a bit field.

Bit position�xe "bit position"�s within an n bit field�xe "bit field"� are numbered such that the least significant bit is numbered 0 and the most significant bit is numbered n(1.

Descriptor formats

Descriptor formats shall be specified by a figure specifying the location, length, name and contents of each field. The interpretation of each field shall be given in the prose associated with the figure.

Byte position�Length in bytes�Name�Contents��0�4�Data Length (=D_L)�Uint32 (� ref part_General * mergeformat �1�/� ref GUInt32 * mergeformat \n �7.1.5�)��4�32�Application�xe "application"� Identifier�xe "application:identifier"� �regid�xe "regid"� (� ref part_General * mergeformat �1�/� ref Gregid * mergeformat \n �7.4�)��36�4�Reserved�#00 bytes��40�2�Type�Int16 (� ref part_General * mergeformat �1�/� ref Gint16 * mergeformat \n �7.1.4�) =57��42�D_L�Implementation Use�xe "implementation use"� �bytes��[D_L+42]�*�Padding�#00 bytes��Figure � SEQ SEQ_FIGURE_General �1� - Example descriptor format

The descriptor specified by figure � REF part_General * MERGEFORMAT �1�/� REF GExample_descriptor_format * MERGEFORMAT �1� has six fields:

The Data Length field shall be a 32-bit unsigned integer recorded according to � ref part_General * mergeformat �1�/� ref GUInt32 * mergeformat \n �7.1.5� in byte positions 0 to 3 of the descriptor. The value of this field may be referred to as D_L.

The Application�xe "application"� Identifier�xe "application:identifier"� field shall be a 32 byte field specifying an identification of an application recorded according to � ref part_General * mergeformat �1�/� ref Gregid * mergeformat \n �7.4� in byte positions 4 to 35 of the descriptor.

The Reserved field shall be 4 bytes, each with the value #00, recorded in byte positions 36 to 39 of the descriptor.

The Type field shall be the number 57 as a 16-bit signed integer recorded according to � ref part_General * mergeformat �1�/� ref GInt16 * mergeformat \n �7.1.4� in byte positions 40 to 41 of the descriptor.

The Implementation Use�xe "implementation use"� field shall be D_L bytes recorded in byte positions 42 to (D_L+41), where D_L is the value recorded in the Data Length field of this descriptor. A symbolic length referred to in a descriptor shall either be defined within that descriptor or be described in the interpretation of the field it is used in. The specification of the interpretation for this field might state that the interpretation of those bytes is not specified by this ECMA Standard, or could specify some specific interpretation for those bytes.

The Padding field shall be a variable length field, as indicated by the asterisk “*”, of bytes, each with a value of #00. The specification of the interpretation for the field shall specify the length of the field.

Character strings

�xe "character:string"�A value for a sequence of bytes may be specified by a quoted sequence of characters, encoded according to the International Reference Version of ECMA-6�xe "ISO/IEC 646"�. For example, “Sheep” shall represent the bytes #53, #68, #65, #65, #70.

Arithmetic notation

�xe "notation"�The notation ip(x) shall mean the integer part of x.

The notation rem(a,b) shall mean a(b(ip(a /b), where a and b are integers.

Schema

�xe "schema"�The notation specified by this clause, hereafter referred to as schema, specifies the format of a structure, or sequence of structures, by construction. White space is unimportant. A structure shall be a sequence of terms. A term shall be either a name enclosed by <> or a structure definition enclosed by {}. A term may be given a name label by preceding the term with [label]. A term may be suffixed by one of the repetition operators in figure � REF part_General * MERGEFORMAT �1�/� REF GRepetition_operators * MERGEFORMAT �2�.

Operator�Interpretation��n + m�n to m occurrences inclusive��n+�n or more occurrences��n�n occurrences exactly��Figure � SEQ SEQ_FIGURE_General �2� - Repetition operators

The expression term1 | term2 means either term1 or term2 shall appear at this place in the sequence.

Names shall be resolved in one of the following three ways:

the name is that of a descriptor or term defined in this ECMA Standard

the name has been defined in this structure definition using the [] notation�xe "notation"�

the name will be defined in the prose associated with the structure definition

If a term is followed by a clause enclosed in (), it shall refer to only those objects specified by the term for which the clause is true.

These operators shall be applied in increasing order of precedence with the | operator having lowest precedence:

|	repetition operator		[]	()

As an example, the schema�xe "schema"� shown in figure � REF part_General * MERGEFORMAT �1�/� REF GExample_structure_sequence_schema * MERGEFORMAT �3�, specifies that the term Set means zero or more Groups, where a Group is a sequence of two or more Group Headers, followed by a Group Element, which is one of three alternatives (one or two Type-1 Descriptors, or a single Type-2 Descriptor whose length is even, or one or more Type-3 Descriptors), followed by one or more Group Trailers.

[Set]{

	[Group]{

		<Group Header> 2+

		[Group Element]{

			<Type-1 Descriptor> 1+2

			|	<Type-2 Descriptor>(descriptor length is even)

			|	<Type-3 Descriptor> 1+

		}

		<Group Trailer> 1+

	} 0+

}

Figure � SEQ SEQ_FIGURE_General �3� - Example schema�xe "schema"�

Other notations

Various other notations used in this ECMA Standard are specified in figure � REF part_General * MERGEFORMAT �1�/� REF GOther_notation * MERGEFORMAT �4�.

Notation�xe "notation"� �Interpretation��BP�Byte position within a descriptor, starting with 0��RBP�Relative byte position within a descriptor, starting with 0��ZERO�A single bit with the value 0��ONE�A single bit with the value 1��Figure � SEQ SEQ_FIGURE_General �4� - Other notations

Basic types

The following basic type�xe "basic type"�s are used in this ECMA Standard.

Numerical values

The recording format of a numerical value�xe "numerical value"� represented in binary notation�xe "notation"� by an n-bit number shall be denoted by a type name of Intn or Uintn where

n denotes the number of bits used in the binary number

Uint denotes an unsigned integer x, in the range 0 (x < 2n, represented as a binary number

Int denotes a signed integer x, in the range (2n(1 < x < 2n(1, represented by a two's complement number

A numerical value�xe "numerical value"� shall be recorded in a field of a structure specified by this ECMA Standard in one of the following formats. The applicable format shall be specified in the description of the structure.

8-bit unsigned numerical values

�xe "numerical value"�A Uint8 value shall be recorded as an 8-bit unsigned number in a one-byte field.

8-bit signed numerical values

�xe "numerical value"�An Int8 value shall be recorded as a two's complement number in a one-byte field.

16-bit unsigned numerical values

�xe "numerical value"�A Uint16 value, represented by the hexadecimal representation #wxyz, shall be recorded in a two-byte field as #yz #wx.

Note �SEQ Note *MERGEFORMAT�3�

For example, the decimal number 4 660 has #1234 as its hexadecimal representation and shall be recorded as #34 #12.

16-bit signed numerical values

�xe "numerical value"�An Int16 value, represented in two's complement form by the hexadecimal representation #wxyz, shall be recorded in a two-byte field as #yz #wx.

Note �SEQ Note *MERGEFORMAT�4�

For example, the decimal number -30 875 has #8765 as its hexadecimal representation and shall be recorded as #65 #87.

32-bit unsigned numerical values

�xe "numerical value"�A Uint32 value, represented by the hexadecimal representation #stuvwxyz, shall be recorded in a four-byte field as #yz #wx #uv #st.

Note �SEQ Note *MERGEFORMAT�5�

For example, the decimal number 305 419 896 has #12345678 as its hexadecimal representation and shall be recorded as #78 #56 #34 #12.

32-bit signed numerical values

�xe "numerical value"�An Int32 value, represented in two's complement form by the hexadecimal representation #stuvwxyz, shall be recorded in a four-byte field as #yz #wx #uv #st.

Note �SEQ Note *MERGEFORMAT�6�

For example, the decimal number -559 038 737 has #DEADBEEF as its hexadecimal representation and shall be recorded as #EF #BE #AD #DE.

64-bit unsigned numerical values

�xe "numerical value"�A Uint64 value, represented by the hexadecimal representation #klmnopqrstuvwxyz, shall be recorded in an eight-byte field as #yz #wx #uv #st #qr #op #mn #kl.

Note �SEQ Note *MERGEFORMAT�7�

For example, the decimal number 12 345 678 987 654 321 012 has #AB54A9A10A23D374 as its hexadecimal representation and shall be recorded as #74 #D3 #23 #0A #A1 #A9 #54 #AB.

Character sets and coding

�xe "character set"�Except as specified in this clause, the characters in the descriptors specified by this ECMA Standard shall be coded according to ECMA-6�xe "ISO/IEC 646"�.

Certain fields specifying character strings�xe "character:string"� shall be designated as containing either a dstring (� ref part_General * mergeformat �1�/� ref Gdstring * mergeformat \n �7.2.12�) or d-characters. The specification of the d-characters allowed in these fields and the method of recording shall be specified by a charspec�xe "charspec"�, defined in � ref part_General * mergeformat �1�/� ref Gcharspec * mergeformat \n �7.2.1�. The set of allowed characters shall be referred to as d-characters.

Note �SEQ Note *MERGEFORMAT�8�

Support for a variety of character set�xe "character set"�s is a requirement for this ECMA Standard. Ideally, there would be only one character standard used. In practice, several standards, including ECMA-6�xe "ISO/IEC 646"�, ECMA-35�xe "ISO 2022"�, ECMA-94, Latin Alphabet No. 1 and ISO/IEC 10646�1 are used. This ECMA Standard accommodates current practice by specifying several character sets and providing a mechanism for specifying other character sets.

As an example, CS2 (see � ref part_General * mergeformat �1�/� ref GCS2 * mergeformat \n �7.2.4�) uses ECMA-6 as the base character set but restricts fields containing characters to a widely usable subset of this character set.

Character set specification

�xe "character set"�The set of characters allowed in certain descriptor fields shall be specified by a charspec�xe "charspec"�, which shall be recorded in the format shown in figure � REF part_General * MERGEFORMAT �1�/� REF Gcharspec_format * MERGEFORMAT �5�.

RBP�Length�Name�Contents��0�1�Character Set�xe "character set"� Type�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��1�63�Character Set�xe "character set"� Information �bytes��Figure � SEQ SEQ_FIGURE_General �5� - charspec�xe "charspec"� format

Character Set Type (RBP 0) removefromTOC

�xe "character set"�This field shall specify the allowed characters by identifying a set of characters shown in figure � REF part_General * MERGEFORMAT �1�/� REF GSets_of_allowed_characters * MERGEFORMAT �6�.

Type�Allowed characters��0�The CS0�xe "character set:CS0"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS0 * mergeformat \n �7.2.2�).��1�The CS1�xe "character set:CS1"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS1 * mergeformat \n �7.2.3�).��2�The CS2�xe "character set:CS2"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS2 * mergeformat \n �7.2.4�).��3�The CS3�xe "character set:CS3"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS3 * mergeformat \n �7.2.5�).��4�The CS4�xe "character set:CS4"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS4 * mergeformat \n �7.2.6�).��5�The CS5�xe "character set:CS5"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS5 * mergeformat \n �7.2.7�).��6�The CS6�xe "character set:CS6"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS6 * mergeformat \n �7.2.8�).��7�The CS7�xe "character set:CS7"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS7 * mergeformat \n �7.2.9�).��8�The CS8�xe "character set:CS8"� coded character�xe "character:coded"� set�xe "character set"� (� ref part_General * mergeformat �1�/� ref GCS8 * mergeformat \n �7.2.10�).��9-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_General �6� - Sets of allowed characters

Note �SEQ Note *MERGEFORMAT�9�

Briefly, these character set�xe "character set"�s are:

CS0�xe "character set:CS0"� (by agreement

CS1�xe "character set:CS1"� (the whole or any subset of the graphic character�xe "character:graphic"�s specified by ECMA-6

CS2�xe "character set:CS2"� (a highly portable set of 38 graphic character�xe "character:graphic"�s which include the characters in ECMA-119�xe "ISO 9660"� file identifiers associated with a directory hierarchy identified by an ECMA-119 Primary Volume Descriptor

CS3�xe "character set:CS3"� (the 63 graphic character�xe "character:graphic"�s of the portable ISO/IEC 9945�xe "ISO/IEC 9945"�-1 file name set

CS4�xe "character set:CS4"� (the 95 graphic character�xe "character:graphic"�s of the International Reference Version of ECMA-6�xe "ISO/IEC 646"�

CS5�xe "character set:CS5"� (the 191 graphic character�xe "character:graphic"�s of ECMA-94, Latin Alphabet No. 1

CS6 (a set of graphic characters that may be identified by ECMA-35 and ECMA-48

CS7 (a set of graphic characters that may be identified by ECMA-35 and ECMA-48 and, optionally, code extension characters using ECMA-35 and ECMA-48

CS8 (a set of 53 graphic characters that are highly portable to most personal computers

Character Set Information (RBP 1) removefromTOC

Except where specified in the following specifications of character sets CS0 through CS8, the contents of this field shall be set to all #00 bytes.

Note �SEQ Note *MERGEFORMAT�10�

�xe "character set"�The Character Set Types CS0, CS1, CS6 and CS7 require the use of the Character Set Information field to specify a set of graphic characters. CS1 restricts the set of graphic characters to those specified by ISO/IEC 10646-1. CS0, CS6 and C7 are not restricted to any particular set of graphic characters. CS7 allows code extension characters (see � ref part_General * mergeformat �1�/� ref GCS7_code * mergeformat \n �7.2.9.1�) to be used in a descriptor field. The same set of graphic characters may be specified by using the CS0, CS1, CS6 or CS7 Character Set Types. The order of specifying the escape sequences and control sequences in a Character Set Information field is not specified by this ECMA Standard. For example, in specifying a character set, the escape sequence identifying the G1 character set may be recorded before the escape sequence specifying the G0 character set. Character Set Information fields with different byte sequences may actually be identifying the same set of graphic characters.

CS0 character set

The CS0 character set and its d-characters shall be subject to agreement between the originator and recipient of the medium.

An identification of the character set�xe "character set"� may be given in the Character Set Information field. Such identification shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

CS1 character set

�xe "character set:CS1"�The CS1 d-characters shall be the graphic character�xe "character:graphic"�s of the character set�xe "character set"�s specified by the Character Set Information field.

The Character Set�xe "character set"� Information field shall specify one or more escape sequences�xe "escape sequences"�, control sequences or both escape sequences and control sequences to be used in an 8-bit environment according to ECMA-35�xe "ISO 2022"� and ECMA-48�xe "ISO/IEC 6429"� that designate and implicitly invoke graphic character�xe "character:graphic"� sets specified in ISO/IEC 10646�1. These sequences shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

CS2 character set

The CS2�xe "character set:CS2"� d-characters shall be the 38 characters in positions 02/14, 03/00 to 03/09, 04/01 to 05/10, and 05/15 of the International Reference Version of ECMA-6�xe "ISO/IEC 646"�. The Character Set Information field shall be set to all #00 bytes.

Note �SEQ Note *MERGEFORMAT�11�

These characters are: FULL STOP, DIGITs, LATIN CAPITAL LETTERs and LOW LINE.

CS3 character set

The CS3�xe "character set:CS3"� d-characters shall be the 65 characters in positions 02/13 to 02/14, 03/00 to 03/09, 04/01 to 05/10, 05/15, and 06/01 to 07/10 of the International Reference Version of ECMA-6�xe "ISO/IEC 646"�. The Character Set Information field shall be set to all #00 bytes.

Note �SEQ Note *MERGEFORMAT�12�

These characters are: HYPHEN-MINUS, FULL STOP, DIGITs, LATIN CAPITAL LETTERs, LATIN SMALL LETTERs and LOW LINE.

CS4 character set

The CS4�xe "character set:CS4"� d-characters shall be the 95 characters in positions 02/00 to 07/14 of the International Reference Version of ECMA-6�xe "ISO/IEC 646"�. The Character Set Information field shall be set to all #00 bytes.

CS5 character set

The CS5�xe "character set:CS5"� d-characters shall be the 191 characters in positions 02/00 to 07/14 and 10/00 to 15/15 of ECMA-94, Latin Alphabet No. 1. The Character Set Information field shall be set to all #00 bytes.

CS6 character set

The CS6�xe "character set:CS6"� d-characters shall be the graphic character�xe "character:graphic"�s of the character set�xe "character set"�s specified by the Character Set Information field.

The Character Set�xe "character set"� Information field shall specify one or more escape sequences�xe "escape sequences"�, control sequences or both escape sequences and control sequences according to ECMA-35�xe "ISO 2022"� and ECMA-48�xe "ISO/IEC 6429"� that designate and implicitly invoke the graphic character�xe "character:graphic"� sets to be used in an 8-bit environment according to ECMA-35 or ISO/IEC 10646�1. These sequences shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

CS7 character set

The CS7 d-characters shall be the graphic characters of the character sets specified by the Character Set Information field and code extension characters (see � ref part_General * mergeformat �1�/� ref GCS7_code * mergeformat \n �7.2.9.1�).

The Character Set Information field shall specify one or more escape sequences, control sequences or both escape sequences and control sequences according to ECMA-35 and ECMA-48 that designate and implicitly invoke the graphic character�xe "character:graphic"� set�xe "character set"�s to be used in an 8-bit environment according to ECMA-35�xe "ISO 2022"� or ISO/IEC 10646�1. These sequences shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

Code extension characters removefromTOC

A descriptor field which has been assigned to contain d-characters specified by the CS7�xe "character set:CS7"� Character Set�xe "character set"� may include one or more of the following, referred to as code extension character�xe "character:code extension"�s, to allow alternative character sets to be recorded in the descriptor field.

Escape sequences according to ECMA-35�xe "ISO 2022"� or ISO/IEC 10646�1.

Shift functions according to ECMA-35�xe "ISO 2022"�.

Control functions according to ECMA-48�xe "ISO/IEC 6429"� or ISO/IEC 10646�1.

CS8 character set

The CS8�xe "character set:CS8"� d-characters shall be the 53 characters in positions 02/01, 02/03 to 02/09, 02/13 to 02/14, 03/00 to 03/09, 04/00 to 05/10, 05/14 to 06/00, 07/11 and 07/13 to 07/14 of the International Reference Version of ECMA-6�xe "ISO/IEC 646"�.

Note �SEQ Note *MERGEFORMAT�13�

These characters are: EXCLAMATION MARK, NUMBER SIGN, DOLLAR SIGN, PERCENT SIGN, AMPERSAND, APOSTROPHE, LEFT PARENTHESIS, RIGHT PARENTHESIS, HYPHEN-MINUS, FULL STOP, DIGITs, LATIN CAPITAL LETTERs, CIRCUMFLEX ACCENT, LOW LINE, GRAVE ACCENT, LEFT CURLY BRACKET, RIGHT CURLY BRACKET, TILDE.

List of character sets

A list of Character Set�xe "character set"� Types (see � ref part_General * mergeformat �1�/� ref Gcharacter_set_type * mergeformat \n �7.2.1.1�) shall be recorded as a Uint32 (� ref part_General * mergeformat �1�/� ref GUInt32 * mergeformat \n �7.1.5�) where the bit for a Character Set Type shall be ONE if that Character Set Type belongs to the list and ZERO otherwise.

The bit for Character Set�xe "character set"� Type CSn shall be recorded in bit n of the Uint32 (� ref part_General * mergeformat �1�/� ref GUInt32 * mergeformat \n �7.1.5�). Bits 9-31 are reserved for future standardisation and shall be set to ZERO.

Fixed-length character fields

A dstring of length n is a field of n bytes where d-characters (� ref part_General * mergeformat �1�/� ref Gdchars * mergeformat \n �7.2�) are recorded. The number of bytes used to record the characters shall be recorded as a Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�) in byte n, where n is the length of the field. The characters shall be recorded starting with the first byte of the field, and any remaining byte positions after the characters up until byte n(1 inclusive shall be set to #00.

Unless otherwise specified, a dstring shall not be all #00 bytes.

Timestamp

A timestamp shall specify a date and time recorded in the format shown in figure � REF part_General * MERGEFORMAT �1�/� REF Gtimestamp_format * MERGEFORMAT �7�. If all fields are 0, it shall mean that the date and time are not specified.

RBP�Length�Name�Contents��0�2�Type and Time Zone�xe "time:zone"� �Uint16 (� ref part_General * mergeformat �1�/� ref GUInt16 * mergeformat \n �7.1.3�)��2�2�Year�Int16 (� ref part_General * mergeformat �1�/� ref GInt16 * mergeformat \n �7.1.4�)��4�1�Month�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��5�1�Day�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��6�1�Hour�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��7�1�Minute�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��8�1�Second�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��9�1�Centiseconds�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��10�1�Hundreds of Microseconds�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��11�1�Microseconds�Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��Figure � SEQ SEQ_FIGURE_General �7� - timestamp�xe "timestamp"� format

Type and Time Zone (RBP 0) removefromTOC

�xe "time:zone"�The most significant 4 bits of this field, interpreted as a 4-bit number, shall specify the interpretation of the timestamp�xe "timestamp"� as shown in figure � REF part_General * MERGEFORMAT �1�/� REF Gtimestamp_interpretation * MERGEFORMAT �8�. The least significant 12 bits, interpreted as a signed 12-bit number in two’s complement form, shall be interpreted as follows:

If the value is in the range (1 440 to 1 440 inclusive, then the value specifies the offset, in minutes, of the date and time of the day from Coordinated Universal Time�xe "time:Coordinated Universal Time"�.

If the value is (2 047, then no such value is specified.

Type�Interpretation��0�The timestamp�xe "timestamp"� specifies Coordinated Universal Time�xe "time:Coordinated Universal Time"�.��1�The timestamp�xe "timestamp"� specifies local time�xe "time:local"�.��2�The interpretation of the timestamp�xe "timestamp"� is subject to agreement between the originator and recipient of the medium.��3-15�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_General �8� - timestamp�xe "timestamp"� interpretation

Year (RBP 2) removefromTOC

This field shall specify the year as a number in the range 1 to 9999.

Month (RBP 4) removefromTOC

This field shall specify the month of the year as a number in the range 1 to 12.

Day (RBP 5) removefromTOC

This field shall specify the day of the month as a number in the range 1 to 31.

Hour (RBP 6) removefromTOC

This field shall specify the hour of the day as a number in the range 0 to 23.

Minute (RBP 7) removefromTOC

This field shall specify the minute of the hour as a number in the range 0 to 59.

Second (RBP 8) removefromTOC

If the value of the Type field is 2, then this field shall specify the second of the minute as a number in the range 0 to 60. Otherwise, this field shall specify the second of the minute as a number in the range 0 to 59.

Centiseconds (RBP 9) removefromTOC

This field shall specify the hundredths of the second as a number in the range 0 to 99.

Hundreds of Microseconds (RBP 10) removefromTOC

This field shall specify the hundreds of microseconds as a number in the range 0 to 99.

Microseconds (RBP 11) removefromTOC

This field shall specify the microseconds as a number in the range 0 to 99.

Entity identifier

A regid�xe "regid"� specifies an entity identification and shall be recorded in the format shown in figure � REF part_General * MERGEFORMAT �1�/� REF Gregid_format * MERGEFORMAT �9�. The identification in a regid pertains to certain information; this information shall be called the scope�xe "scope"� of the regid. The scope of a regid consists of the field in which the regid is recorded and any information specified by the description of that field to be part of the scope the regid.

RBP�Length�Name�Contents��0�1�Flags�xe "flags"��Uint8 (� ref part_General * mergeformat �1�/� ref GUInt8 * mergeformat \n �7.1.1�)��1�23�Identifier�bytes��24�8�Identifier Suffix�bytes��Figure � SEQ SEQ_FIGURE_General �9� - regid�xe "regid"� format

Flags (RBP 0) removefromTOC

�xe "flags"�This field shall specify certain characteristics of the regid�xe "regid"� as shown in figure � REF part_General * MERGEFORMAT �1�/� REF GCharacteristics_of_regid * MERGEFORMAT �10�.

Bit�Interpretation��0�Dirty: If an implementation modifies the information on the medium within the scope�xe "scope"� of this regid�xe "regid"� such that the identification specified by this regid might not be valid, then this bit shall be set to ONE, otherwise it shall be set to ZERO.��1�Protected: If this bit is ONE, then the contents of this regid�xe "regid"� shall not be modified; if this bit is ZERO, then the contents of this regid may be modified (see � ref Part_Volume �3�/� ref Vrequirements_Originating_General \n �13.1� and � ref part_File �4�/� ref Faccess_User_Descriptors \n �17.2.3�).��2-7�shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_General �10� - Characteristics of regid�xe "regid"�

Identifier (RBP 1) removefromTOC

If the first byte of this field contains #2B, then this field contains an identifier specified by ECMA-168 or this ECMA Standard. If the first byte of this field contains #2D, then this field contains an identifier that shall not be registered. If the first byte of this field is neither #2D nor #2B, then this field shall specify an identifier which may be registered according to ISO/IEC 13800. An identifier shall be a sequence of at most 23 octets, at least one of which shall be nonzero; these octets shall be recorded in ascending order as the least significant 8 bits of bytes 0 through 22 of this field respectively. Any unused bytes shall be set to #00.

The interpretation of the content of the Identifier field shall be specified in the description of the descriptor field in which the regid�xe "regid"� is recorded.

If this field contains all #00 bytes, then this field does not specify an identifier.

Note �SEQ Note *MERGEFORMAT�14�

The values #2B and #2D do not represent characters. However, for most coded character�xe "character:coded"� set�xe "character set"�s using the value recorded in one byte to represent a character, such as ECMA-6�xe "ISO/IEC 646"�, the value #2B corresponds to “+” and the value #2D corresponds to “(”.

Identifier Suffix (RBP 24) removefromTOC

This field shall specify further identification in a manner not specified by this ECMA Standard.

�Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � seq Part �2� : Volume and Boot Block Recognition� tc � ref part_Boot_long �Part 2 : Volume and Boot Block Recognition� \n �

�� tc “Section 1 - General” \n �

Section 1 - General

Scope

�xe "scope"�Part � ref part_Boot �2� specifies a format and associated system requirements�xe "requirements"� for volume and boot block�xe "boot block"� recognition by specifying:

volume recognition�xe "volume recognition"�;

boot descriptors intended for use to bring a system to a known state;

levels of medium interchange�xe "interchange"�;

requirements�xe "requirements"� for the processes which are provided within information processing systems, to enable information to be interchanged between different systems; for this purpose, Part � ref part_Boot �2� specifies the functions to be provided within systems which are intended to originate or receive media which conform to Part � ref part_Boot �2�.

Parts references

See � ref part_General �1�/� ref Gparts_Reference \n �2�.

Part interface

This clause specifies the interface of Part � ref part_Boot �2� to other standards or Parts.

Input

�xe "input"�Part � ref part_Boot �2� requires the specification of the following by another standard or Part.

A standard for recording (see � ref part_General �1�/� ref Gstandard_for_Recording \n �5.10�).

The address of the initial sector�xe "sector:initial"��xe "sector"� in the volume (see � ref part_Boot �2�/� ref Bsector_Numbers \n �8.1.1�).

A volume recognition space (see � ref part_Boot �2�/� ref BVolume_Recognition_Space \n �8.2�).

Output

�xe "output"�Part � ref part_Boot �2� specifies the following which may be used by other standards or Parts.

identification of certain standards (see � ref part_Boot �2�/� ref BStandard_Identifier \n �9.1.2�) used to record information in the volume.

information that may be used to bring a system to a known state.

Conformance

�xe "conformance"�See � ref part_General �1�/� ref GConformance \n �3�.

Definitions

In addition to the definitions of Part � ref part_General �1� (see � ref part_General �1�/� ref GDefinitions \n �5�), the following definition applies for Part � ref part_Boot �2�.

extent

A set of sectors, the sector�xe "sector"� number�xe "sector:number"�s of which form a continuous ascending sequence. The address, or location, of an extent�xe "extent"� is the number of the first sector in the sequence.

Notation

�xe "notation"�The notation of Part � ref part_General �1� (see � ref part_General �1�/� ref GNotation \n �6�) applies to Part � ref part_Boot �2�.

Basic types

The basic type�xe "basic type"�s of Part � ref part_General �1� (see � ref part_General �1�/� ref GBasic_Types \n �7�) apply to Part � ref part_Boot �2�.

��tc "Section 2 - Requirements for the medium for volume and boot block recognition" \l 1 \n �

Section 2 - Requirements�xe "requirements"� for the medium for volume and boot block�xe "boot block"� recognition

Volume recognition

�xe "volume recognition"�

Arrangement of data on a volume

Sector numbers

�xe "volume recognition"�Each sector�xe "sector"� of a volume shall be identified by a unique�xe "unique"� sector number�xe "sector:number"�. Sector numbers shall be consecutive integers assigned in an ascending sequence, in the order of ascending physical address of the volume as specified in the relevant standard for recording (see � ref part_General �1�/� ref GStandard_for_Recording \n �5.10�). Sector number 0 shall be assigned to the initial sector�xe "sector:initial"� of the volume as specified in � ref part_Boot �2�/� ref BPart_Interface_Input \n �3.1�.

Volume recognition space

A volume recognition�xe "volume recognition"� space shall be a contiguous sequence of sectors. The bytes in the volume recognition space shall be numbered with consecutive integers assigned in ascending sequence. The numbering shall start from 0 which shall be assigned to the first byte of the first sector�xe "sector"� of the volume recognition space. The numbering shall continue through successive bytes of that sector and then through successive bytes of each successive sector, if any, of the volume recognition space.

Volume recognition area

A volume recognition�xe "volume recognition"� area shall be recorded in the volume recognition space. A volume recognition area shall consist of a volume recognition sequence (see � ref part_Boot �2�/� ref BVolume_Recognition_Sequence \n �8.3.1�) recorded in consecutively numbered sectors starting with the first byte of the first sector�xe "sector"� that begins after byte number 32 767 of the volume recognition space. Part � ref part_Boot �2� does not specify the interpretation of the information recorded in the volume recognition space other than in the volume recognition area of the volume recognition space.

Volume recognition sequence

A volume recognition�xe "volume recognition"� sequence shall consist of a consecutively recorded sequence of one or more Volume Structure Descriptors (see � ref part_Boot �2�/� ref BVolume_Structure_Descriptor \n �9.1�) recorded according to the schema�xe "schema"� shown in figure � ref part_Boot �2�/� REF BVolume_recognition_sequence_schema * MERGEFORMAT �1�.

Each Volume Structure Descriptor shall specify a standard or clause which shall specify the interpretation of the contents of the descriptor and the value of n (see figure � ref part_Boot �2�/� REF BVolume_recognition_sequence_schema * MERGEFORMAT �1�).

The first Volume Structure Descriptor of the sequence shall be recorded beginning at the first byte of the first sector�xe "sector"� of the volume recognition�xe "volume recognition"� area in which it is recorded. Each successive Volume Structure Descriptor of the sequence shall be recorded beginning at the first byte of the sector with the next higher sector number�xe "sector:number"� than that of the last sector constituting the previous Volume Structure Descriptor of the sequence.

Note �SEQ Note \r 1 *MERGEFORMAT�1�

The volume recognition�xe "volume recognition"� sequence is terminated by the first sector�xe "sector"� which is not a valid descriptor, rather than by an explicit descriptor. This sector might be an unrecorded or blank sector�xe "sector:blank"�.

[volume recognition sequence]{

	<CD-ROM Volume Descriptor Set>0+1

	[Extended Area]{

			<Beginning Extended Area Descriptor> 1+

			{ <Volume Structure Descriptor> | <Boot Descriptor> } n+

			<Terminating Extended Area Descriptor> 1+

	} 0+

}

Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �1� - Volume recognition sequence schema

CD-ROM Volume Descriptor Set

A CD-ROM Volume Descriptor Set shall be a set of consecutively recorded Volume Structure Descriptors whose Standard Identifier fields shall not contain “BEA01” and shall be interpreted according to ECMA-119�xe "ISO 9660"�.

Recording of descriptors

All the descriptors in Part � ref part_Boot �2� shall be recorded so that the first byte of the descriptor coincides with the first byte of a sector�xe "sector"�. All space, if any, after the last byte of the descriptor up to the end of the sector containing the last byte of the descriptor is reserved for future standardisation and shall be recorded as all #00 bytes.

Volume recognition structures

Volume Structure Descriptor

The Volume Structure Descriptor shall be recorded in the format shown in figure � ref part_Boot �2�/� REF BGeneric_Volume_Structure_Descriptor_for * MERGEFORMAT �2�.

BP�Length�Name�Contents��0�1�Structure Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��1�5�Standard Identifier�bytes��6�1�Structure Version�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��7�2 041�Structure Data�bytes��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �2� - Generic Volume Structure Descriptor format

Structure Type (BP 0) removefromTOC

The number in this field shall specify the type of the Volume Structure Descriptor. The interpretation of the number shall be specified by the Standard or clause identified in the Standard Identifier field.

Standard Identifier (BP 1) removefromTOC

This field shall specify the interpretation of the Volume Structure Descriptor as shown in figure � ref part_Boot �2�/� REF BVolume_Structure_Descriptor_interpretat * MERGEFORMAT �3�.

Identifier�Interpretation��“BEA01”�According to � ref part_Boot �2�/� ref BBeginning_Extended_Area_Descriptor \n �9.2�.��“BOOT2”�According to � ref part_Boot �2�/� ref BBoot_Descriptor \n �9.4�.��“CD001”�According to ECMA-119�xe "ISO 9660"�.��“CDW02”�According to ECMA-168.��“NSR02”�According to 3/9.1 of ECMA 167/2.��“NSR03”�According to � ref part_Volume �3�/� ref VNSR_Descriptor \n �9.1� of this ECMA Standard.��“TEA01”�According to � ref part_Boot �2�/� ref BTerminating_Extended_Area_Descriptor \n �9.3�.��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �3� - Volume Structure Descriptor interpretation

All other values are reserved for future standardisation.

Structure Version (BP 6) removefromTOC

The number in this field shall specify the version�xe "version"� of the Volume Structure Descriptor. The interpretation of the number shall be specified by the Standard or clause identified in the Standard Identifier field.

Structure Data (BP 7) removefromTOC

The interpretation of this field shall be specified by the Standard or clause identified in the Standard Identifier field.

Beginning Extended Area Descriptor

The Beginning Extended Area Descriptor�xe "Beginning Extended Area Descriptor"� shall be recorded in the format shown in figure � ref part_Boot �2�/� REF BBeginning_Extended_Area_Descriptor_form * MERGEFORMAT �4�.

BP�Length�Name�Contents��0�1�Structure Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 0��1�5�Standard Identifier�bytes = “BEA01”��6�1�Structure Version�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��7�2 041�Structure Data�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �4� - Beginning Extended Area Descriptor�xe "Beginning Extended Area Descriptor"� format

Structure Type (BP 0) removefromTOC

This field shall specify 0.

Standard Identifier (BP 1) removefromTOC

This field shall specify “BEA01”.

Structure Version (BP 6) removefromTOC

This field shall specify the version�xe "version"� of this descriptor. The value 1 shall indicate the structure of Part � ref part_Boot �2�.

Structure Data (BP 7) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Terminating Extended Area Descriptor

The Terminating Extended Area Descriptor�xe "Terminating Extended Area Descriptor"� shall be recorded in the format shown in figure � ref part_Boot �2�/� REF BTerminating_Extended_Area_Descriptor_fo * MERGEFORMAT �5�.

BP�Length�Name�Contents��0�1�Structure Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 0��1�5�Standard Identifier�bytes = “TEA01”��6�1�Structure Version�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��EMBED MSGraph.Chart.5���

�7�2 041�Structure Data�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �5� - Terminating Extended Area Descriptor�xe "Terminating Extended Area Descriptor"� format

Structure Type (BP 0) removefromTOC

This field shall specify 0.

Standard Identifier (BP 1) removefromTOC

This field shall specify “TEA01”.

Structure Version (BP 6) removefromTOC

This field shall specify the version�xe "version"� of this descriptor. The value 1 shall indicate the structure of Part � ref part_Boot �2�.

Structure Data (BP 7) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Boot Descriptor

The Boot Descriptor shall be recorded in the format shown in figure � ref part_Boot �2�/� REF BBoot_Descriptor_format * MERGEFORMAT �6�.

BP�Length�Name�Contents��0�1�Structure Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 0��1�5�Standard Identifier�bytes = “BOOT2”��6�1�Structure Version�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��7�1�Reserved�#00 byte��8�32�Architecture�xe "architecture"� Type�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��40�32�Boot Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��72�4�Boot Extent Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��76�4�Boot Extent Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��80�8�Load Address�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��88�8�Start Address�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��96�12�Descriptor Creation Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��108�2�Flags�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��110�32�Reserved�#00 bytes��142�1 906�Boot Use�bytes��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �6� - Boot Descriptor�xe "Boot Descriptor"� format

Structure Type (BP 0) removefromTOC

This field shall specify 0.

Standard Identifier (BP 1) removefromTOC

This field shall specify “BOOT2”.

Structure Version (BP 6) removefromTOC

This field shall specify the version�xe "version"� of this descriptor. The value 1 shall indicate the structure of Part � ref part_Boot �2�.

Reserved (BP 7) removefromTOC

This field shall be reserved for future standardisation and shall be set to #00.

Architecture Type (BP 8) removefromTOC

�xe "architecture"�This field shall specify an identification of a system which can recognise and act upon the contents of the Boot Identifier field. If this field contains all #00 bytes, no such system is identified.

Boot Identifier (BP 40) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Boot Extent Location, Boot Extent Length, Load Address, Start Address and Boot Use fields. If this field contains all #00 bytes, no such implementation is identified.

Boot Extent Location (BP 72) removefromTOC

This field shall specify the address of an extent�xe "extent"� of the volume containing boot information. If the Boot Extent Length field contains 0, then no boot extent is specified and this field shall contain 0.

Note �SEQ Note *MERGEFORMAT�2�

If no boot extent�xe "extent"� is specified, the information needed to boot might be recorded in the Boot Use field.

Boot Extent Length (BP 76) removefromTOC

This field shall specify the length, in bytes, of the extent�xe "extent"� identified by the Boot Extent Location field.

Load Address (BP 80) removefromTOC

This field shall specify the memory address at which the information in the extent�xe "extent"� specified by the Boot Extent field should be copied.

Start Address (BP 88) removefromTOC

This field shall specify the memory address to which control should be transferred after the information specified by the Boot Extent field has been copied into memory.

Descriptor Creation Date and Time (BP 96) removefromTOC

This field shall specify the date and time of the day at which the information in this descriptor was recorded.

Flags (BP 108) removefromTOC

�xe "flags"�This field shall specify certain characteristics of the Boot Descriptor�xe "Boot Descriptor"� as shown in figure � ref part_Boot �2�/� REF BBoot_Descriptor_characteristics * MERGEFORMAT �7�.

Bit�Interpretation��0�Erase: For any Boot Descriptor�xe "Boot Descriptor"� with the same contents of the Architecture�xe "architecture"� Type and Boot Identifier fields as this Boot Descriptor and recorded in any lower numbered sectors of the volume recognition�xe "volume recognition"� sequence than the sectors that this Boot Descriptor is recorded in: if set to ZERO, shall mean that this Boot Descriptor overrides any such Boot Descriptor; if set to ONE, shall mean that any such Boot Descriptor (including this Boot Descriptor) shall be ignored.��1-15�Shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_VolumeAndBootBlockRecognition �7� - Boot Descriptor�xe "Boot Descriptor"� characteristics

Reserved (BP 110) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Boot Use (BP 142) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"�, and its contents are not specified by Part � ref part_Boot �2�.

Note �SEQ Note *MERGEFORMAT�3�

The Boot Descriptor�xe "Boot Descriptor"� is designed to allow a generic boot program�xe "boot program"�. Such a boot program would scan for Boot Descriptors with a matching Architecture�xe "architecture"� Type (which might represent combinations of processor type and memory management), and after examining the Boot Identifier, which might encode the operating system type and options, present the user with a choice of operating systems to boot. As Part � ref part_Boot �2� cannot mandate any specific implementation behaviour, the recommended interpretation of the Boot Descriptor, that is, read an extent�xe "extent"� of sectors from the volume into memory at a specified location and then transfer execution to another specified location, is optional.

Levels of medium interchange

�xe "interchange"�Part � ref part_Boot �2� specifies two levels of medium interchange�xe "interchange"�. The level of a volume shall be that level specifying the most restrictions�xe "restrictions"� required to record the volume according to the specifications of Part � ref part_Boot �2�.

Level 1

At level 1, the following restriction shall apply:

The Boot Identifier field of a Boot Descriptor shall be different from the Boot Identifier field of all other Boot Descriptors having identical contents of the Architecture Type field.

Level 2

At level 2, no restrictions�xe "restrictions"� shall apply.

��tc "Section 3 - Requirements for systems for volume and boot block recognition" \l 1 \n �

Section 3 - Requirements�xe "requirements"� for systems for volume and boot block�xe "boot block"� recognition

Requirements for the description of systems

�xe "requirements"�Part � ref part_Boot �2� specifies that certain information shall be communicated between a user and an implementation. Each implementation that conforms to Part � ref part_Boot �2� shall have a description that identifies the means by which the user may supply or obtain such information.

Note �SEQ Note *MERGEFORMAT�4�

The specifics of the description and the means referred to above will vary from implementation to implementation. For example, an implementation might support two interfaces: a preferred, convenient interface which might vet user input�xe "input"�, and a deprecated low level interface which allows any input specified by Part � ref part_Boot �2�.

Requirements for an originating system

�xe "requirements"��xe "system:originating"�

General

The implementation shall be capable of recording Beginning Extended Area Descriptor�xe "Beginning Extended Area Descriptor"�s and Terminating Extended Area Descriptor�xe "Terminating Extended Area Descriptor"�s as specified in Part � ref part_Boot �2� on a volume.

Optional access by user

Descriptors

If the implementation is capable of recording a Volume Structure Descriptor with the value “CD001” or “CDW02” or “NSR02” in the Standard Identifier field, the implementation shall record the descriptor according to the Standard or � ref part_Boot �2�/� ref BStandard_Identifier \n �9.1.2�.

Requirements for a receiving system

�xe "requirements"��xe "system:receiving"�

General

The implementation shall be capable of interpreting Beginning Extended Area Descriptor�xe "Beginning Extended Area Descriptor"�s and Terminating Extended Area Descriptor�xe "Terminating Extended Area Descriptor"�s as specified in Part � ref part_Boot �2� on a volume.

Optional access by user

Descriptors

If the implementation is capable of interpreting a Volume Structure Descriptor with the value “CD001” or “CDW02” or “NSR02” or “NSR03” in the Standard Identifier field, the implementation shall interpret the descriptor according to the Standard or � ref part_Boot �2�/� ref BStandard_Identifier \n �9.1.2�.

�Annex � seq Annex * Alphabetic �A�

(informative)

Changes from ECMA 167/2 to this standard

� tc “Annex � seq Annex \c * Alphabetic�A�: Changes from ECMA 167/2” \l 1 �

The NSR03 descriptor was added for recognition of media written to this version of this standard.

�Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � seq Part �3� : Volume Structure

� tc � ref part_Volume_long * mergeformat �Part 3 : Volume Structure� \n�

�� tc “Section 1 - General” \n �

Section 1 - General

Scope

�xe "scope"�Part � ref part_Volume �3� specifies a format and associated system requirements�xe "requirements"� for volume structure by specifying:

the attributes of a volume and the descriptors recorded on it;

the relationship among volumes of a volume set�xe "volume set"�;

the attributes of a partition of a volume;

the attributes of a logical volume�xe "logical volume"� and the descriptors recorded on it;

levels of medium interchange�xe "interchange"�;

requirements�xe "requirements"� for the processes which are provided within information processing systems, to enable information to be interchanged between different systems; for this purpose, it specifies the functions to be provided within systems which are intended to originate or receive media which conform to Part � ref part_Volume �3�.

Parts references

See � ref part_General �1�/� ref GParts_Reference \n �2�.

Part interface

This clause specifies the interface of Part � ref part_Volume �3� to other standards or Parts.

Input

�xe "input"�Part � ref part_Volume �3� requires the specification of the following by another standard or Part.

A standard for recording (see � ref part_General �1�/� ref GStandard_for_Recording \n �5.10�).

The size of a logical sector�xe "logical sector"��xe "sector"� (see � ref part_Volume �3�/� ref VLogical_Sector \n �8.1.2�) of a volume.

If the volume is recorded according to Part � ref part_Boot �2�, a volume recognition�xe "volume recognition"� sequence specified by Part � ref part_Boot �2� shall contain the descriptor described in � ref part_Volume �3�/� ref VNSR_Descriptor \n �9.1� recorded at least once.

If the volume is recorded according to Part � ref part_Boot �2�, the volume recognition�xe "volume recognition"� space (see � ref part_Boot �2�/� ref BVolume_Recognition_Space \n �8.2�) shall be the entire volume.

If the volume is recorded according to Part � ref part_Boot �2�, the initial sector�xe "sector:initial"��xe "sector"� in the volume (see � ref part_Boot �2�/� ref BPart_Interface_Input \n �3.1�) shall be the first sector of the volume.

Information to be recorded in the Partition Contents Use field of a Partition Descriptor�xe "Partition Descriptor"� (see � ref part_Volume �3�/� ref VPartition_Contents_Use \n �10.5.6�).

Information to be recorded in the Logical Volume Contents Use field of a Logical Volume Descriptor�xe "Logical Volume Descriptor"� (see � ref part_Volume �3�/� ref VLogical_Volume_Contents_Use \n �10.6.7�).

Output

�xe "output"�Part � ref part_Volume �3� specifies the following which may be used by other standards or Parts.

Volume sets of one or more volumes (see � ref part_Volume �3�/� ref VVolume_Set \n �8.6�).

A volume space�xe "volume space"� for a volume (see � ref part_Volume �3�/� ref VVolume_Space \n �8.2�).

Logical sector�xe "logical sector"��xe "sector"�s of a fixed size for a volume (see � ref part_Volume �3�/� ref VLogical_Sector \n �8.1.2�).

Partitions (see � ref part_Volume �3�/� ref VPartition \n �8.7�).

Logical volume�xe "logical volume"�s composed of partitions (see � ref part_Volume �3�/� ref VLogical_Volume \n �8.8�).

Numeric identification of the partitions within a logical volume�xe "logical volume"� (see � ref part_Volume �3�/� ref VLogical_Volume \n �8.8�).

Logical block�xe "logical block"�s of a fixed size for a logical volume�xe "logical volume"�.

The logical block�xe "logical block"� size�xe "logical block:size"� for a logical volume�xe "logical volume"�.

Attributes of a volume.

Attributes of a logical volume�xe "logical volume"�.

Attributes of a partition.

An indication that a volume may have been recorded to this Part (see � ref part_Volume �3�/� ref VNSR_Descriptor \n �9.1�).

Conformance

�xe "conformance"�See � ref part_General �1�/� ref GConformance \n �3�.

Definitions

In addition to the definitions of Part � ref part_General �1� (see � ref part_General �1�/� ref GDefinitions \n �5�), the following definitions apply for Part � ref part_Volume �3�.

anchor point

One of a specified set of logical sector numbers at which descriptors, that identify an extent of a Volume Descriptor Sequence, may be recorded.

Cyclic Redundancy Check (CRC)

A method for computing a signature of a sequence of bytes.

extent

A set of logical sectors whose logical sector numbers (see � ref part_Volume �3�/� ref VLogical_Sector_Number \n �8.1.2.1�) form a continuous ascending sequence. The address, or location, of an extent is the first logical sector number in that sequence.

logical block

The unit of allocation of a logical volume.

logical sector

The unit of allocation of a volume.

logical volume

A non-empty set of partitions.

partition

An extent of logical sectors within a volume.

Notation

�xe "notation"�The notation of Part � ref part_General �1� (see � ref part_General �1�/� ref GNotation \n �6�) applies to Part � ref part_Volume �3�.

Basic types

In addition to the basic type�xe "basic type"�s of Part � ref part_General �1� (see � ref part_General �1�/� ref GBasic_Types \n �7�), the following basic types apply for Part � ref part_Volume �3�.

Extent Descriptor

�xe "Extent Descriptor"�An Extent Descriptor, hereafter designated as extent�xe "extent"�_ad, shall be recorded in the format shown in figure � ref part_Volume �3�/� REF Vextent_ad_format * MERGEFORMAT �1�.

RBP�Length�Name�Contents��0�4�Extent Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�4�Extent Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_VolumeStructure �1� - extent�xe "extent"�_ad format

Extent Length (RBP 0) removefromTOC

This field shall indicate the length of the extent, in bytes, identified by the Extent Location field. The length shall be less than 230. Unless otherwise specified, the length shall be an integral multiple of the logical sector size.

Extent Location (RBP 4) removefromTOC

This field shall specify the location of the extent, as a logical sector number. If the extent's length is 0, no extent is specified and this field shall contain 0.

Descriptor tag

�xe "tag"�Certain descriptors specified in Part � ref part_Volume �3� have a 16 byte structure, or tag, recorded at the start of the descriptor. The tag shall be recorded with the format shown in figure � ref part_Volume �3�/� REF Vtag_format * MERGEFORMAT �2�.

Note �SEQ Note \r 1 *MERGEFORMAT�1�

There are two main motivations for using a generic tag�xe "tag"� structure. The first is that most descriptors need to handle common issues of CRCs and format versions. The second motivation is to support recovery after the medium has been damaged or corrupted in some (unspecified) way. With the tag described here, structures are self identifying and can be verified with very little context.

RBP�Length�Name�Contents��0�2�Tag Identifier�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��2�2�Descriptor Version�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��4�1�Tag Checksum�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��5�1�Reserved�#00 byte��6�2�Tag Serial Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��8�2�Descriptor CRC�xe "CRC"� �Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��10�2�Descriptor CRC�xe "CRC"� Length�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��12�4�Tag Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_VolumeStructure �2� - tag�xe "tag"� format

Tag Identifier (RBP 0) removefromTOC

This field shall specify an identification of the descriptor type. Type 0 shall specify that the format of this descriptor is not specified by Part � ref part_Volume �3�. Types 1-7 and 9 are specified as shown in figure � ref part_Volume �3�/� REF VDescriptor_interpretation * MERGEFORMAT �3�. Type 8 is specified identically in Part � ref part_Volume �3� and Part � ref part_File �4�. Types 256-266 are specified in Part � ref part_File �4�. Types 65 280-65 535 are subject to agreement between the originator and recipient of the medium. All other types are reserved for future standardisation. The descriptor types specified by Part � ref part_Volume �3� are shown in figure � ref part_Volume �3�/� REF VDescriptor_interpretation * MERGEFORMAT �3�.

Type�Interpretation��1�Primary Volume Descriptor�xe "Primary Volume Descriptor"� (� ref part_Volume �3�/� ref VPrimary_Volume_Descriptor \n �10.1�)��2�Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"� (� ref part_Volume �3�/� ref VAnchor_Volume_Descriptor_Pointer \n �10.2�)��3�Volume Descriptor Pointer�xe "Volume Descriptor Pointer"� (� ref part_Volume �3�/� ref VVolume_Descriptor_Pointer \n �10.3�)��4�Implementation Use�xe "implementation use"� Volume Descriptor�xe "Implementation Use Volume Descriptor"� (� ref part_Volume �3�/� ref VImplementation_Use_Volume_Descriptor \n �10.4�)��5�Partition Descriptor�xe "Partition Descriptor"� (� ref part_Volume �3�/� ref VPartition_Descriptor \n �10.5�)��6�Logical Volume Descriptor�xe "Logical Volume Descriptor"� (� ref part_Volume �3�/� ref VLogical_Volume_Descriptor \n �10.6�)��7�Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� (� ref part_Volume �3�/� ref VUnallocated_Space_Descriptor \n �10.8�)��8�Terminating Descriptor�xe "Terminating Descriptor"� (� ref part_Volume �3�/� ref VTerminating_Descriptor \n �10.9� and � ref part_File�4�/� ref FTerminating_Descriptor \n �14.2�)��9�Logical Volume Integrity Descriptor�xe "Logical Volume Integrity Descriptor"� (� ref part_Volume �3�/� ref VLogical_Volume_Integrity_Descriptor \n �10.10�)��Figure � SEQ SEQ_FIGURE_VolumeStructure �3� - Descriptor interpretation

Descriptor Version (RBP 2) removefromTOC

This field shall specify the version of this descriptor. This value shall be 2 or 3. The value 3 shall indicate the structure of Part � ref part_Volume �3�. The value 2 shall indicate the structure of Part 3 of ECMA-167/2. See � ref part_Volume �3�/� ref VRequirements_Originating_General \n �13.1� and � ref part_Volume �3�/� ref VRequirements_Receiving_General \n �14.1� for requirements.

Note � seq Note �2�:

Structures with version 2 descriptors may be on the medium due to changing the medium from NSR02 to NSR03 without rewriting all descriptors as version 3. Originating systems shall record a 3 in this field; receiving systems shall allow a 2 or 3. (see � ref part_Volume �3�/� ref VRequirements_Originating_General \n �13.1� and � ref part_Volume �3�/� ref VRequirements_Receiving_General \n �14.1�)

Tag Checksum (RBP 4) removefromTOC

This field shall specify the sum modulo 256 of bytes 0-3 and 5-15 of the tag.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and shall be set to 0.

Tag Serial Number (RBP 6) removefromTOC

This field shall specify an identification of a set of descriptors. If the field contains 0, then no such identification is specified.

Note �SEQ Note *MERGEFORMAT�3�

This field can be used to distinguish between groups of descriptors. For example, when reusing rewritable media�xe "rewritable media"�, an implementation might choose a different serial number from the previous use when initialising a volume. Thus, a disaster recovery�xe "disaster recovery"� mechanism can avoid recovering prior and unintended data. The only alternative to this scheme would be to force volume initialisation to clear the volume.

Descriptor CRC (RBP 8) removefromTOC

�xe "CRC"�This field shall specify the CRC of the bytes of the descriptor starting at the first byte after the descriptor tag�xe "tag"�. The number of bytes shall be specified by the Descriptor CRC Length field. The CRC shall be 16 bits long and be generated by the CRC-ITU�T polynomial (see ITU�T V.41):

x16 + x12 + x5 + 1

Note �SEQ Note *MERGEFORMAT�4�

As an example, the CRC�xe "CRC"� of the three bytes #70 #6A #77 is #3299. Implementations can avoid calculating the CRC by setting the Descriptor CRC Length to 0, as then the Descriptor CRC shall be 0.

Descriptor CRC Length (RBP 10) removefromTOC

�xe "CRC"�This field specifies how many bytes were used in calculating the Descriptor CRC.

Tag Location (RBP 12) removefromTOC

This field shall specify the number of the logical sector�xe "logical sector"��xe "sector"� containing the first byte of the descriptor.

Note �SEQ Note *MERGEFORMAT�5�

The location of the tag�xe "tag"� may appear to be redundant but its primary purpose is to make it extremely likely that if the first 16 bytes of a logical sector�xe "logical sector"� or logical block is a consistent descriptor tag, then it is a descriptor tag.

�tc "Section 2 - Requirements for the medium for volume structure" \l 1 \n �

�Section 2 - Requirements�xe "requirements"� for the medium for volume structure

Volume structure

Arrangement of information on a volume

Sector numbers

Each sector�xe "sector"� of a volume shall be identified by a unique�xe "unique"� sector number�xe "sector:number"�. Sector numbers shall be consecutive integers assigned in an ascending sequence, in the order of ascending physical address of the volume as specified in the relevant standard for recording (see � ref part_General �1�/� ref GStandard_for_Recording \n �5.10�). Sector number 0 shall be assigned to the sector having the lowest physical address of the volume.

Logical sector

The sectors of a volume shall be organised into logical sector�xe "logical sector"��xe "sector"�s of equal length. The length of a logical sector shall be referred to as the logical sector size�xe "logical sector:size"� and shall be an integral multiple of 512 bytes. The logical sector size shall be not less than the size of the smallest sector of the volume. Each logical sector shall begin in a different sector, starting with the sector having the next higher sector number�xe "sector:number"� than that of the last sector constituting the previous, if any, logical sector of the volume. The first byte of a logical sector shall be the first byte of the sector in which it begins, and if the size of this sector is smaller than the logical sector size, then the logical sector shall comprise a sequence of constituent sectors with consecutive ascending sector numbers.

Logical sector numbers

Each logical sector�xe "logical sector"��xe "sector"� of a volume shall be identified by a unique�xe "unique"� logical sector number�xe "logical sector:number"��xe "sector:number"�. Logical sector numbers shall be consecutive integers assigned in ascending sequence, in the order of ascending sector numbers of the volume. Logical sector number 0 shall be assigned to the logical sector beginning in sector number 0. The largest logical sector number of a volume shall be greater than 256.

Recording of logical sectors

Any unrecorded constituent sector�xe "sector"� of a logical sector�xe "logical sector"� shall be interpreted as containing all #00 bytes. Within the sector containing the last byte of a logical sector, the interpretation of any bytes after that last byte is not specified by this Part.

A logical sector�xe "logical sector"��xe "sector"� is unrecorded if the standard for recording allows detection that a sector has been unrecorded and all of the logical sector's constituent sectors are unrecorded. A logical sector should either be completely recorded or unrecorded.

Volume space

The information on a volume shall be recorded in the set of all logical sector�xe "logical sector"��xe "sector"�s in a volume. This set shall be referred to as the volume space�xe "volume space"� of the volume. The bytes in the volume space shall be numbered with consecutive integers assigned in ascending sequence starting with 0. Let s be the number of bytes in a logical sector; then byte b of the volume space is byte rem(b,s) of logical sector ip(b/s).

Volume descriptors

Characteristics of the volume shall be specified by volume descriptors recorded in Volume Descriptor Sequences as described in � ref part_Volume �3�/� ref VVolume_Descriptor_Sequence_Recording \n �8.4.2�.

A volume descriptor shall be one of the following types:

Primary Volume Descriptor (see � ref part_Volume �3�/� ref VPrimary_Volume_Descriptor \n �10.1�)

Implementation Use�xe "implementation use"� Volume Descriptor�xe "Implementation Use Volume Descriptor"� (see � ref part_Volume �3�/� ref VImplementation_Use_Volume_Descriptor \n �10.4�)

Partition Descriptor�xe "Partition Descriptor"� (see � ref part_Volume �3�/� ref VPartition_Descriptor \n �10.5�)

Logical Volume Descriptor�xe "Logical Volume Descriptor"� (see � ref part_Volume �3�/� ref VLogical_Volume_Descriptor \n �10.6�)

Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� (see � ref part_Volume �3�/� ref VUnallocated_Space_Descriptor \n �10.8�)

Volume Descriptor Sequence

Contents of a Volume Descriptor Sequence

A Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall contain one or more Primary Volume Descriptor�xe "Primary Volume Descriptor"�s. A Primary Volume Descriptor shall identify the volume and the volume set�xe "volume set"� to which it belongs, the sequence number of the volume within the volume set, attributes of the volume, and the character set�xe "character set"�s used in recording the contents of certain fields within the Primary Volume Descriptor. Each Primary Volume Descriptor shall have an assigned Primary Volume Descriptor Number. Only one prevailing�xe "prevailing"� Primary Volume Descriptor (see � ref part_Volume �3�/� ref VPrevailing_Descriptors \n �8.4.3�) of a Volume Descriptor Sequence shall have a Primary Volume Descriptor Number of 0.

A Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall contain zero or more Implementation Use�xe "implementation use"� Volume Descriptor�xe "Implementation Use Volume Descriptor"�s. An Implementation Use Volume Descriptor shall identify an implementation and contain information for that implementation's use.

A Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall contain zero or more Partition Descriptor�xe "Partition Descriptor"�s. A Partition Descriptor shall specify a partition, attributes of the partition and an identification of the partition, referred to as the partition number.

A Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall contain zero or more Logical Volume Descriptor�xe "Logical Volume Descriptor"�s. A Logical Volume Descriptor shall specify an identification of the logical volume�xe "logical volume"�, the logical block�xe "logical block"� size�xe "logical block:size"� of the logical volume, identification of the partitions comprising the logical volume and attributes of the logical volume.

A Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall contain zero or more Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"�s. An Unallocated Space Descriptor shall identify volume space�xe "volume space"� available for allocating to partitions or for recording the Volume Descriptor Sequences of the volume.

Each volume descriptor�xe "volume descriptor"� shall have an assigned Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number. All volume descriptors with identical Volume Descriptor Sequence Numbers shall have identical contents.

Note �SEQ Note *MERGEFORMAT�6�

Typically, an originating system�xe "system:originating"� will chose a new Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number by adding 1 to the largest such number seen when scanning the Volume Descriptor Sequence.

Recording of the Volume Descriptor Sequence

A Volume Descriptor Sequence shall be recorded as a sequence of extents of logical sectors in the volume space. Any trailing sectors (see figure � ref part_Volume �3�/� REF VVolume_Descriptor_Sequence_schema * MERGEFORMAT �4�) shall be available for the recording of descriptors.

An extent of a Volume Descriptor Sequence shall be recorded according to the schema shown in figure � ref part_Volume �3�/� REF VVolume_Descriptor_Sequence_schema * MERGEFORMAT �4�.

[Volume Descriptor Sequence extent]{

					<volume descriptor>0+

			[Terminator]{

					<Volume Descriptor Pointer>

				|	<Terminating Descriptor>

				|	<unrecorded logical sector>

			} <trailing logical sector>0+

}

Figure � SEQ SEQ_FIGURE_VolumeStructure �4� - Volume Descriptor Sequence schema

An extent�xe "extent"� of a Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� shall be identified by an Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"� (see � ref part_Volume �3�/� ref VAnchor_Volume_Descriptor_Pointer \n �10.2�) recorded at two or more anchor point�xe "anchor point"�s (see � ref part_Volume �3�/� ref VAnchor_Points \n �8.4.2.1�). Each, if any, subsequent extent in the Volume Descriptor Sequence shall be identified by a Volume Descriptor Pointer recorded in the previous extent of the sequence.

An Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"� shall identify the Main Volume Descriptor Sequence�xe "Volume Descriptor Sequence:main"��xe "Volume Descriptor Sequence"� and may identify a Reserve Volume Descriptor Sequence�xe "Reserve Volume Descriptor Sequence"� (see � ref part_Volume �3�/� ref VReserve_Volume_Descriptor_Sequence \n �8.4.2.2�). All Volume Descriptor Sequences specified by Anchor Volume Descriptor Pointers shall be equivalent (see � ref part_Volume �3�/� ref VEquivalent_Volume_Descriptor_Sequences \n �8.4.2.3�).

Anchor points

Let k be ip(n/59), where n is the largest logical sector�xe "logical sector"��xe "sector"� number�xe "logical sector:number"��xe "sector:number"� in the volume space�xe "volume space"�. Anchor point�xe "anchor point"�s shall be at two or more of the following logical sector numbers: 256, n(256, n and all the nonzero integral multiples of k not greater than n.

Note �SEQ Note *MERGEFORMAT�7�

The value 59 was chosen as a number near 64 that was unlikely to be periodic with respect to the geometry of the underlying medium.

Reserve Volume Descriptor Sequence Set

A Reserve Volume Descriptor Sequence�xe "Reserve Volume Descriptor Sequence"��xe "Volume Descriptor Sequence"� may be recorded on a volume. A Reserve Volume Descriptor Sequence, if any, shall be identified by an Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"�. If any Anchor Volume Descriptor Pointer of the volume identifies a Reserve Volume Descriptor Sequence, then all Anchor Volume Descriptor Pointers of the volume shall identify a Reserve Volume Descriptor Sequence. If the Reserve Volume Descriptor Sequence is identified, it shall specify a Volume Descriptor Sequence equivalent to the Main Volume Descriptor Sequence�xe "Volume Descriptor Sequence:main"� (see � ref part_Volume �3�/� ref VEquivalent_Volume_Descriptor_Sequences \n �8.4.2.3�). There shall be no logical sector�xe "logical sector"��xe "sector"� which belongs to both an extent�xe "extent"� of the Main Volume Descriptor Sequence and an extent of the Reserve Volume Descriptor Sequence.

Equivalent Volume Descriptor Sequences

The equivalence of two Volume Descriptor Sequence�xe "Volume Descriptor Sequence"�s shall be determined by calculating a canonical form�xe "canonical form"� for each of the Volume Descriptor Sequences, and if both the canonical forms are identical, then the two Volume Descriptor Sequences specify equivalent sets of volume descriptor�xe "volume descriptor"�s. The canonical form of a Volume Descriptor Sequence shall be constructed by performing the following steps in sequence:

discard any Volume Descriptor Pointers

discard all but one descriptor for each Volume Descriptor Sequence Number

set the Tag Checksum, Descriptor CRC, Descriptor CRC Length, and Tag Location fields of the Descriptor Tag field in each descriptor to 0

sort the remaining descriptors as byte sequences

catenate the descriptors in sorted order

Prevailing descriptors

Within each of the following classes of descriptors:

Primary Volume Descriptors, each of which has the same contents of the corresponding Volume Identifier, Volume Set Identifier and Descriptor Character Set fields

Partition Descriptors with identical Partition Numbers

Logical Volume Descriptors, each of which has the same contents of the corresponding Logical Volume Identifier and Descriptor Character Set fields

Unallocated Space Descriptors

the one with the highest Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number shall be used. This instance shall be referred to as the prevailing�xe "prevailing"� instance.

Recording of descriptors

All the descriptors in Part � ref part_Volume �3� whose format is specified with Byte Positions (BP) shall be recorded so that the first byte of the descriptor coincides with the first byte of a logical sector�xe "logical sector"��xe "sector"�.

The descriptors in Part � ref part_Volume �3� whose format is specified with Relative Byte Positions (RBP) have no restrictions�xe "restrictions"� on where they may be recorded within a logical sector�xe "logical sector"��xe "sector"�, except that their location within a descriptor shall be specified in the description of the applicable descriptor.

When the descriptors described in Part � ref part_Volume �3� are recorded in a logical sector�xe "logical sector"��xe "sector"�, all space, if any, after the end of the last descriptor up to the end of the logical sector is reserved for future standardisation and shall be recorded as all #00 bytes.

Note �SEQ Note *MERGEFORMAT�8�

Most of the descriptors specified in Part � ref part_Volume �3� have a length of 512 bytes.

Allocation of the volume space

The logical sector�xe "logical sector"��xe "sector"� is the unit of allocation for the volume space�xe "volume space"�. Volume space may be allocated for the recording of Volume Descriptor Sequence�xe "Volume Descriptor Sequence"�s, or Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"�s, or may be allocated to partitions. This allocation shall be done from the unallocated volume space�xe "unallocated volume space"� which shall be specified as extents of logical sectors by the prevailing�xe "prevailing"� instance of the Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� (see � ref part_Volume �3�/� ref VUnallocated_Space_Descriptor \n �10.8�).

Volume Descriptor Sequence�xe "Volume Descriptor Sequence"�s and Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"�s shall not be recorded in volume space�xe "volume space"� that has been allocated to a rewritable or overwritable partition.

Note �SEQ Note *MERGEFORMAT�9�

Implementations should not assume that the sum of the allocated logical sector�xe "logical sector"��xe "sector"�s and the unallocated logical sector�xe "unallocated logical sector"�s in a volume equals the size of the volume space�xe "volume space"�. Parts of the volume space might be unallocated for several reasons, including media defects or for use by processes external to Part � ref part_Volume �3�.

Volume set

A volume set�xe "volume set"� shall consist of one or more volumes having a volume set identification common to all volumes in the volume set. The volumes in a volume set shall be numbered with consecutive integers assigned in an ascending sequence starting from 1. This number shall be the assigned volume sequence number of the volume.

Each prevailing�xe "prevailing"� Primary Volume Descriptor�xe "Primary Volume Descriptor"� recorded on a volume contains a volume set�xe "volume set"� identification consisting of the contents of the Volume Set Identifier and Descriptor Character Set�xe "character set"� fields, a volume identification�xe "volume identification"� consisting of the contents of the Volume Identifier and Descriptor Character Set fields, and specifies whether that volume set identification is common to each volume of the volume set. Exactly one of the volume set identifications specified on a volume shall be marked as being common to each volume of the volume set (see � ref part_Volume �3�/� ref VPVD_Flags \n �10.1.21�). The same volume identification shall not be specified by more than one volume of a volume set.

Partition

A partition is an extent of a volume and shall be identified by a Partition Number in the range 0 to 65 535 inclusive. The information about a partition shall be recorded in a Partition Descriptor. The prevailing instance of the Partition Descriptor with a specific Partition Number shall specify whether volume space has been allocated to the partition and may specify an identification of the partition's contents.

Note �SEQ Note *MERGEFORMAT�10�

Partitions may overlap. This allows media to be initialised with several predefined partition definitions of varying sizes and locations. A user can then simply select a set of non-overlapping partitions to use. In general, it is inadvisable to use file system�xe "file system"�s on overlapping partitions.

Logical volume

A Logical Volume Descriptor�xe "Logical Volume Descriptor"� specifies a logical volume�xe "logical volume"� identification�xe "logical volume:identification"��xe "volume identification"�, the logical block�xe "logical block"� size�xe "logical block:size"� of the logical volume, and an ordered list of partitions comprising the logical volume. The partitions of a logical volume may be on different volumes of a volume set�xe "volume set"�.

The partitions in a logical volume�xe "logical volume"� shall be numbered with consecutive integers assigned in an ascending sequence starting from 0. This number shall be the assigned partition reference number and shall be the numeric identification referred to in � ref part_Volume �3�/� ref VPart_Interface_Output \n �3.2�.

A logical volume�xe "logical volume"� shall be described by the prevailing�xe "prevailing"� instance of a Logical Volume Descriptor�xe "Logical Volume Descriptor"� recorded on the volume with the highest volume sequence number in a volume set�xe "volume set"�. Each Logical Volume Descriptor recorded on a volume set contains a logical volume identification�xe "logical volume:identification"��xe "volume identification"� consisting of the contents of the Logical Volume Identifier and Descriptor Character Set�xe "character set"� fields. More than one logical volume may be recorded on a volume set. Logical Volume Descriptors for all the logical volumes in a volume set shall be recorded in the volume with the highest volume sequence number.

Note �SEQ Note *MERGEFORMAT�11�

A logical volume�xe "logical volume"� provides a segmented address space that can span multiple partitions and volumes of a volume set�xe "volume set"�. As a consequence of this, a logical volume may only belong to one volume set.

Logical blocks

The logical sector�xe "logical sector"��xe "sector"�s of a partition in a logical volume�xe "logical volume"� shall be organised into logical block�xe "logical block"�s of equal length. The length of a logical block shall be referred to as the logical block size�xe "logical block:size"� and shall be an integral multiple of 512 bytes not less than the size of the logical sector of the volume. The logical block size of each partition of a logical volume shall be the same.

Each logical block�xe "logical block"� shall begin in a different logical sector�xe "logical sector"��xe "sector"�, and shall start with the logical sector having the next higher logical sector number�xe "logical sector:number"��xe "sector:number"� than that of the last logical sector constituting the previous, if any, logical block of the partition. The first byte of a logical block shall be the first byte of the logical sector in which it begins, and if the logical sector size�xe "logical sector:size"� is smaller than the logical block size�xe "logical block:size"�, then the logical block shall comprise a sequence of constituent logical sectors with consecutive ascending logical sector numbers. Within the logical sector containing the last byte of a logical block, the interpretation of any bytes after that last byte is not specified by this Part.

Each logical block�xe "logical block"� of a partition shall be identified by a unique�xe "unique"� logical block number�xe "logical block:number"�. Logical block numbers shall be consecutive integers assigned in ascending sequence. The logical block containing logical sector�xe "logical sector"��xe "sector"� 0 shall have a logical block number of 0.

Logical volume integrity

Logical volume�xe "logical volume"� integrity describes the status of the information recorded on a logical volume. This status shall be specified by a Logical Volume Integrity Descriptor (see � ref part_Volume �3�/� ref VLogical_Volume_Integrity_Descriptor \n �10.10�).

The Logical Volume Integrity Descriptors for a logical volume shall be recorded in a Logical Volume Integrity Sequence which shall be recorded as a sequence of extents. The first extent shall be specified by the prevailing Logical Volume Descriptor for the logical volume. Succeeding extents, if any, shall be specified by a Logical Volume Integrity Descriptor. Processing of an extent of Logical Volume Integrity Descriptors shall be as if the descriptors were processed in order of ascending order of their addresses and processing was terminated by an unrecorded logical sector, or a Terminating Descriptor (see � ref part_Volume �3�/� ref VTerminating_Descriptor \n �10.9�) or after a descriptor specifying a subsequent extent�xe "extent"�. After processing all such extents, the last Logical Volume Integrity Descriptor�xe "Logical Volume Integrity Descriptor"� processed shall be used and shall be referred to as the prevailing�xe "prevailing"� Logical Volume Integrity Descriptor.

The status of a logical volume�xe "logical volume"� shall be specified by the prevailing�xe "prevailing"� Logical Volume Integrity Descriptor�xe "Logical Volume Integrity Descriptor"� as follows:

An Open Integrity�xe "integrity:open"� Descriptor shall be recorded before any data is recorded in the logical volume�xe "logical volume"� since the last Close Integrity�xe "integrity:close"� Descriptor, if any, was recorded

A Close Integrity�xe "integrity:close"� Descriptor may be recorded only after the data recorded on the logical volume�xe "logical volume"� is in some consistent form not specified by this Part

Volume recognition structures

NSR Descriptor

�xe "volume recognition"�The NSR Descriptor�xe "NSR Descriptor"� shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VNSR_Descriptor_format * MERGEFORMAT �5�.

Note �SEQ Note *MERGEFORMAT�12�

This descriptor only indicates that a volume may have been recorded to Part � ref part_Volume �3�; in particular, see � ref part_Volume �3�/� ref VPart_Interface_Input \n �3.1� and � ref part_Volume �3�/� ref VPart_Interface_Output \n �3.2�.

BP�Length�Name�Contents��0�1�Structure Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 0��1�5�Standard Identifier�bytes = “NSR03”��6�1�Structure Version�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��7�1�Reserved�#00 byte��8�2 040�Structure Data�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �5� - NSR Descriptor�xe "NSR Descriptor"� format

Structure Type (BP 0) removefromTOC

This field shall specify 0.

Standard Identifier (BP 1) removefromTOC

This field shall specify “NSR03”.

Structure Version (BP 6) removefromTOC

This field shall specify the version�xe "version"� of this descriptor. The value 1 shall indicate the structure of Part � ref part_Volume �3�.

Reserved (BP 7) removefromTOC

This field shall be reserved for future standardisation and shall be set to 0.

Structure Data (BP 8) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Volume data structures

Primary Volume Descriptor

The Primary Volume Descriptor shall identify a volume and certain attributes of that volume. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VPrimary_Volume_Descriptor_format * MERGEFORMAT �6�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=1)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Primary Volume Descriptor�xe "Primary Volume Descriptor"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��24�32�Volume Identifier�dstring � ref part_General �1�/� ref Gdstring \n �7.2.12�)��56�2�Volume Sequence Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��58�2�Maximum Volume Sequence Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��60�2�Interchange Level�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��62�2�Maximum Interchange Level�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��64�4�Character Set�xe "character set"� List�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��68�4�Maximum Character Set�xe "character set"� List�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��72�128�Volume Set�xe "volume set"� Identifier�dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��200�64�Descriptor Character Set�xe "character set"� �charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�)��264�64�Explanatory Character Set�xe "character set"� �charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�)��328�8�Volume Abstract�xe "abstract"� �extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��336�8�Volume Copyright Notice�xe "copyright"� �extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��344�32�Application�xe "application"� Identifier�xe "application:identifier"� �regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��376�12�Recording Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��388�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��420�64�Implementation Use�xe "implementation use"� �bytes��484�4�Predecessor Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��488�2�Flags�xe "flags"��Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��490�22�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �6� - Primary Volume Descriptor�xe "Primary Volume Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 1.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number for this descriptor.

Primary Volume Descriptor Number (BP 20) removefromTOC

This field shall specify the assigned Primary Volume Descriptor�xe "Primary Volume Descriptor"� Number for this Primary Volume Descriptor.

Volume Identifier (BP 24) removefromTOC

This field shall specify an identification of the volume.

Volume Sequence Number (BP 56) removefromTOC

This field shall specify the ordinal number of the volume in the volume set�xe "volume set"� of which the volume is a member.

Maximum Volume Sequence Number (BP 58) removefromTOC

This field shall specify the ordinal number of the volume in the volume set with the largest assigned volume sequence number at the time this descriptor was recorded. If this field contains 0, there is no such identification.

Interchange Level (BP 60) removefromTOC

This field shall specify the current level of medium interchange (� ref part_Volume �3�/� ref VLevels_of_medium_Interchange \n �11�) of the volume described by this descriptor.

Maximum Interchange Level (BP 62) removefromTOC

This field shall specify the maximum value that may be specified for the Interchange Level field of this descriptor.

Character Set List (BP 64) removefromTOC

This field shall identify the character set�xe "character set"�s specified by any field, whose contents are specified to be a charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�), of any descriptor specified in Part � ref part_Volume �3� and recorded on the volume described by this descriptor.

Maximum Character Set List (BP 68) removefromTOC

The Character Set�xe "character set"� List field in this descriptor shall not specify a character set (see � ref part_Volume �3�/� ref Gcharset \n �7.2.11�) not specified by the Maximum Character Set List field.

Note �SEQ Note *MERGEFORMAT�13�

The Interchange Level, Maximum Interchange Level, Character Set�xe "character set"� List and Maximum Character Set List fields permit an implementation to:

determine whether it can process all of the information on the volume.

restrict the recording of information on the volume so that the volume does not exceed the level given in the Maximum Interchange Level field.

restrict the recording of information on the volume so that all character set�xe "character set"�s recorded belong to the Maximum Character Set List field.

This allows a user to create a volume that can be processed when it is returned to the user.

Volume Set Identifier (BP 72) removefromTOC

This field shall specify an identification of the volume set�xe "volume set"� of which the volume is a member.

Descriptor Character Set (BP 200) removefromTOC

�xe "character set"�This field shall specify the d-characters (� ref part_Volume �3�/� ref Gdchars \n �7.2�) allowed in the Volume Identifier and Volume Set�xe "volume set"� Identifier fields.

Explanatory Character Set (BP 264) removefromTOC

�xe "character set"�This field shall specify how to interpret the contents of the Volume Abstract�xe "abstract"� and Volume Copyright Notice�xe "copyright"� extents.

Volume Abstract (BP 328) removefromTOC

This field shall specify an extent�xe "extent"� of logical sector�xe "logical sector"��xe "sector"�s containing an abstract�xe "abstract"� for this volume. If the extent's length is 0, no abstract is specified.

Volume Copyright Notice (BP 336) removefromTOC

This field shall specify an extent�xe "extent"� of logical sector�xe "logical sector"��xe "sector"�s containing a copyright�xe "copyright"� notice for this volume. If the extent's length is 0, no copyright notice is specified.

Application Identifier (BP 344) removefromTOC

This field shall specify an identification of an application. If this field contains all #00 bytes, then no such application is identified.

Recording Date and Time (BP 376) removefromTOC

This field shall indicate the date and time of the day at which this descriptor was recorded.

Implementation Identifier (BP 388) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use�xe "implementation use"� field. If this field contains all #00 bytes, then no such implementation is identified. The scope�xe "scope"� of this regid�xe "regid"� includes the contents of all descriptors, other than Implementation Use Volume Descriptor�xe "Implementation Use Volume Descriptor"�s, in the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� in which the Primary Volume Descriptor�xe "Primary Volume Descriptor"� is recorded.

Implementation Use (BP 420) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"�. Its content is not specified by this Standard.

Predecessor Volume Descriptor Sequence Location (BP 484) removefromTOC

This field shall specify the address of the extent�xe "extent"� of logical sector�xe "logical sector"��xe "sector"�s in which the immediately preceding extent of the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� of the volume is recorded. If this field contains 0, it shall mean that no such extent is identified.

Note �SEQ Note *MERGEFORMAT�14�

This is intended for use in disaster recovery�xe "disaster recovery"�.

Flags (BP 488) removefromTOC

�xe "flags"�This field shall specify certain characteristics of this Primary Volume Descriptor�xe "Primary Volume Descriptor"� as shown in figure � ref part_Volume �3�/� REF VPrimary_Volume_Descriptor_characteristi * MERGEFORMAT �7�.

Bit�Interpretation��0�Volume Set�xe "volume set"� Identification: If set to ZERO, shall mean that the volume set identification in this descriptor need not be common among all volumes in the volume set that this volume belongs to; If set to ONE, shall mean that the volume set identification in this descriptor is common among all volumes in the volume set that this volume belongs to.��1-15�Shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_VolumeStructure �7� - Primary Volume Descriptor�xe "Primary Volume Descriptor"� characteristics

Reserved (BP 490) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Anchor Volume Descriptor Pointer

The Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"� shall specify an extent�xe "extent"� of the Main and Reserve Volume Descriptor Sequence�xe "Reserve Volume Descriptor Sequence"��xe "Volume Descriptor Sequence"�s recorded on the volume. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VAnchor_Volume_Descriptor_Pointer_format * MERGEFORMAT �8�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"��tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=2)��16�8�Main Volume Descriptor Sequence�xe "Volume Descriptor Sequence:main"��xe "Volume Descriptor Sequence"� Extent�extent_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��24�8�Reserve Volume Descriptor Sequence Extent�extent_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��32�480�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �8� - Anchor Volume Descriptor Pointer format

Descriptor Tag (BP 0) removefromTOC

The Tag Identifier field of the tag (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 2.

Main Volume Descriptor Sequence Extent (BP 16) removefromTOC

This field shall specify an extent of the Main Volume Descriptor Sequence.

Note �SEQ Note *MERGEFORMAT�15�

The extent�xe "extent"� specifies allocation rather than recording; that is, space that may be available for recording rather than what is actually recorded. The extent need not be completely recorded.

Reserve Volume Descriptor Sequence Extent (BP 24) removefromTOC

This field shall specify an extent�xe "extent"� of the Reserve Volume Descriptor Sequence�xe "Reserve Volume Descriptor Sequence"��xe "Volume Descriptor Sequence"�. If the extent's length is 0, no such extent is specified.

Note �SEQ Note *MERGEFORMAT�16�

The extent�xe "extent"� specifies allocation rather than recording; that is, space that may be available for recording rather than what is actually recorded. The extent need not be completely recorded.

Reserved (BP 32) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Volume Descriptor Pointer

The Volume Descriptor Pointer�xe "Volume Descriptor Pointer"� shall specify an extent�xe "extent"� of a Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� recorded on the volume. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VVolume_Descriptor_Pointer_format * MERGEFORMAT �9�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=3)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�8�Next Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Extent�extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��28�484�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �9� - Volume Descriptor Pointer�xe "Volume Descriptor Pointer"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 3.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number for this descriptor.

Next Volume Descriptor Sequence Extent (BP 20) removefromTOC

This field shall specify the next extent�xe "extent"� in the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"�. If the extent's length is 0, no such extent is specified.

Note �SEQ Note *MERGEFORMAT�17�

The extent�xe "extent"� specifies allocation rather than recording; that is, space that may be available for recording rather than what is actually recorded. The extent need not be completely recorded.

Reserved (BP 28) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Implementation Use Volume Descriptor

The Implementation Use Volume Descriptor shall identify an implementation which can recognise and act upon the contents of this descriptor's Implementation Use field. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VImplementation_Use_Volume_Descriptor_fo * MERGEFORMAT �10�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=4)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��52�460�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �10� - Implementation Use�xe "implementation use"� Volume Descriptor�xe "Implementation Use Volume Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 4.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number for this descriptor.

Implementation Identifier (BP 20) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use�xe "implementation use"� field. If this field contains all #00 bytes, then no such implementation is identified.

Implementation Use (BP 52) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"�. Its content is not specified by this ECMA Standard.

Partition Descriptor

The Partition Descriptor�xe "Partition Descriptor"� shall specify the size and location of a partition and shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VPartition_Descriptor_format * MERGEFORMAT �11�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_General �1�/� ref Vtag \n �7.2�) (Tag=5)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�2�Partition Flags�xe "flags"��Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��22�2�Partition Number�xe "partition:number"� �Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��24�32�Partition Contents�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��56�128�Partition Contents Use�bytes��184�4�Access Type �Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��188�4�Partition Starting Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��192�4�Partition Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��196�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��228�128�Implementation Use�xe "implementation use"� �bytes��356�156�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �11� - Partition Descriptor�xe "Partition Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 5.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence Number for this descriptor.

Partition Flags (BP 20) removefromTOC

This field shall specify certain characteristics of the partition as shown in figure � ref part_Volume �3�/� REF VPartition_characteristics * MERGEFORMAT �12�.

Bit�Interpretation��0�Allocation: If set to ZERO, shall mean that volume space�xe "volume space"� has not been allocated for this partition; If set to ONE, shall mean that volume space has been allocated for this partition.�� 1-15�Shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_VolumeStructure �12� - Partition characteristics

Partition Number (BP 22) removefromTOC

�xe "partition:number"�This field shall specify the numeric identifier for the partition.

Note �SEQ Note *MERGEFORMAT�18�

The Partition Number�xe "partition:number"� may be 0.

Partition Contents (BP 24) removefromTOC

This field shall specify an identification of how to interpret the contents of the partition. The identifications specified by Part � ref part_Volume �3� are given in figure � ref part_Volume �3�/� REF VPartition_content_interpretation * MERGEFORMAT �13�. Other identifications shall be specified according to � ref part_General �1�/� ref Gregid \n �7.4�.

Contents�Interpretation��“+FDC01”�As if it were a volume recorded according to ECMA-107.��“+CD001”�As if it were a volume recorded according to ECMA-119�xe "ISO 9660"�.��“+CDW02”�As if it were a volume recorded according to ECMA-168.��“+NSR03”�According to Part � ref part_File �4� of this ECMA Standard.��Figure � SEQ SEQ_FIGURE_VolumeStructure �13� - Partition content interpretation

Partition Contents Use (BP 56) removefromTOC

This field shall specify information required for the interpretation of the information recorded on the partition identified by this Partition Descriptor�xe "Partition Descriptor"�. The contents of this field shall be specified by the relevant standard for the interpretation of the information recorded on the partition.

Access Type (BP 184) removefromTOC

This field shall specify the access methods which are permitted on the logical sector�xe "logical sector"��xe "sector"�s of the partition described by this Partition Descriptor�xe "Partition Descriptor"�. The access types are given in figure � ref part_Volume �3�/� REF VAccess_interpretation * MERGEFORMAT �14�.

Type�Interpretation��0�The type of access is not specified by this field.��1�Read only: there shall be no restriction on reading logical sector�xe "logical sector"��xe "sector"�s; logical sectors shall not be recorded.��2�Write once: there shall be no restriction on reading logical sector�xe "logical sector"��xe "sector"�s; logical sectors shall only be recorded once.��3�Rewritable: there shall be no restriction on reading logical sector�xe "logical sector"��xe "sector"�s; logical sectors may require preprocessing before recording.��4�Overwritable: there shall be no restriction on reading or recording logical sectors.��5 and above�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_VolumeStructure �14� - Access interpretation

Partition Starting Location (BP 188) removefromTOC

This field shall specify the logical sector�xe "logical sector"��xe "sector"� number�xe "logical sector:number"��xe "sector:number"� at which the partition begins.

Partition Length (BP 192) removefromTOC

This field shall specify the number of logical sector�xe "logical sector"��xe "sector"�s which comprise the partition.

Implementation Identifier (BP 196) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use�xe "implementation use"� field. If this field contains all #00 bytes, then no such implementation is identified.

Note �SEQ Note *MERGEFORMAT�19�

The scope�xe "scope"� of this regid�xe "regid"� does not include the contents of the partition.

Implementation Use (BP 228) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"� and its contents are not specified by this ECMA Standard.

Reserved (BP 356) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Logical Volume Descriptor

The Logical Volume Descriptor�xe "Logical Volume Descriptor"� shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VLogical_Volume_Descriptor_format * MERGEFORMAT �15�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=6)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�64�Descriptor Character Set�xe "character set"� �charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�)��84�128�Logical Volume Identifier�dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��212�4�Logical Block�xe "logical block"� Size�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��216�32�Domain Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��248�16�Logical Volume Contents Use�bytes��264�4�Map Table Length (=MT_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��268�4�Number of Partition Maps (=N_PM)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��272�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��304�128�Implementation Use�xe "implementation use"� �bytes��432�8�Integrity Sequence Extent�extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��440�MT_L�Partition Maps�bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �15� - Logical Volume Descriptor�xe "Logical Volume Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 6.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence Number for this descriptor.

Descriptor Character Set (BP 20) removefromTOC

This field shall specify the d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�) allowed in the Logical Volume Identifier field.

Logical Volume Identifier (BP 84) removefromTOC

This field shall specify an identification of the logical volume.

Logical Block Size (BP 212) removefromTOC

This field shall specify the size of a logical block�xe "logical block"� in bytes.

Domain Identifier (BP 216) removefromTOC

This field shall specify an identification of a domain which shall specify rules on the use of, and restrictions�xe "restrictions"� on, certain fields in descriptors subject to agreement between the originator and recipient of the medium. If this field contains all #00 bytes, then no such domain is identified. The scope�xe "scope"� of this regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) shall include all information recorded in the logical volume�xe "logical volume"� described by this descriptor, and shall include the scope of the Implementation Identifier field.

Logical Volume Contents Use (BP 248) removefromTOC

This field shall specify information required for the interpretation of the information recorded on the logical volume�xe "logical volume"� identified by this Logical Volume Descriptor�xe "Logical Volume Descriptor"�. The contents of this field shall be specified by the relevant standard for the interpretation of the information recorded on the logical volume.

Map Table Length (=MT_L) (BP 264) removefromTOC

This field shall specify the length of the Partition Maps field in bytes.

Number of Partition Maps (=N_PM) (BP 268) removefromTOC

This field shall specify the number of Partition Maps recorded in the Partition Maps field.

Implementation Identifier (BP 272) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use�xe "implementation use"� field. If this field contains all #00 bytes, then no such implementation is identified.

The scope�xe "scope"� of this regid�xe "regid"� includes the contents of any Partition Descriptor�xe "Partition Descriptor"�s identified by Type 1 Partition Maps recorded in the Partition Maps field.

Implementation Use (BP 304) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"� and its contents are not specified by this ECMA Standard.

Integrity Sequence Extent (BP 432) removefromTOC

This field shall specify the first extent�xe "extent"� of the Logical Volume Integrity Sequence�xe "Logical Volume Integrity Sequence"�. The extent shall be within the volume in which this descriptor is recorded. If N_PM is 0, then the extent’s length may be 0. If the extent’s length is 0, then no such extent is specified.

Partition Maps (BP 440) removefromTOC

This field shall contain N_PM Partition Maps recorded contiguously starting at the first byte of the field. The Partition Maps may be of different types. The length of the Partition Maps shall not exceed MT_L bytes and any unused bytes shall be set to #00.

As specified by � ref part_Volume �3�/� ref VRecording_of_Descriptors \n �8.4.4�, the remainder of the last logical sector�xe "logical sector"��xe "sector"� comprising the Logical Volume Descriptor shall be recorded with #00 bytes.

Partition maps

Generic partition map

A partition map shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VGeneric_partition_map_format * MERGEFORMAT �16�.

RBP�Length�Name�Contents��0�1�Partition Map Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��1�1�Partition Map Length (= PM_L)�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��2�PM_L-2�Partition Mapping�bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �16� - Generic partition map format

Partition Map Type (RBP 0) removefromTOC

The number in this field shall specify the type of the partition map. The types are given in figure � ref part_Volume �3�/� REF VPartition_maps * MERGEFORMAT �17�.

Type�Interpretation��0�Shall mean that the type of the partition map is not specified by this field.��1�Shall mean that the partition map is a Type 1 Partition Map (see � ref part_Volume �3�/� ref VPartition_Map_1 \n �10.7.2�).��2�Shall mean that the partition map is a Type 2 Partition Map (see � ref part_Volume �3�/� ref VPartition_Map_2 \n �10.7.3�).��3-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_VolumeStructure �17� - Partition maps

Partition Map Length (= PM_L) (RBP 1) removefromTOC

This field shall specify the length, in bytes, of this partition map, including the Partition Map Type and Partition Map Length fields.

Partition Mapping (RBP 2) removefromTOC

The interpretation of this field shall be specified by the standard or clause identified in the Partition Map Type field, or shall be subject to agreement between the originator and recipient of the medium if the number in the Partition Map Type field is 0.

Type 1 Partition Map

This map type identifies a partition on a volume in the volume set�xe "volume set"� on which the logical volume�xe "logical volume"� is recorded. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VType_1_Partition_Map_format * MERGEFORMAT �18�.

RBP�Length�Name�Contents��0�1�Partition Map Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��1�1�Partition Map Length�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 6��2�2�Volume Sequence Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��4�2�Partition Number�xe "partition:number"� �Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��Figure � SEQ SEQ_FIGURE_VolumeStructure �18� - Type 1 Partition Map format

Partition Map Type (RBP 0) removefromTOC

This field shall specify 1.

Partition Map Length (RBP 1) removefromTOC

This field shall specify 6.

Volume Sequence Number (RBP 2) removefromTOC

This field specifies the volume, in the volume set�xe "volume set"� on which this logical volume�xe "logical volume"� is recorded, whose volume sequence number is identical to the contents of this field.

Partition Number (RBP 4) removefromTOC

This field specifies the partition, of the volume specified by the Volume Sequence Number field, identified by the Partition Descriptor�xe "Partition Descriptor"� whose Partition Number�xe "partition:number"� field is identical to the contents of the Partition Number field.

Type 2 Partition Map

This map type identifies a partition in a manner subject to agreement between the originator and recipient of the medium.

It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VType_2_Partition_Map_format * MERGEFORMAT �19�.

Note �SEQ Note *MERGEFORMAT�20�

Type 2 maps allow partitions to be identified in an implementation specific way that is outside the scope�xe "scope"� of Part � ref part_Volume �3�. This allows partitions recorded in a manner not specified by Part � ref part_Volume �3�, such as a local disk partition which might locally be referred to as “/dev/dsk/ipi0d2p4” or “a:” or “NODE::DEVICE:”, to be part of a logical volume�xe "logical volume"�. Type 2 maps may present problems when interchanging media.

RBP�Length�Name�Contents��0�1�Partition Map Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 2��1�1�Partition Map Length�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 64��2�62�Partition Identifier�bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �19� - Type 2 Partition Map format

Partition Map Type (RBP 0) removefromTOC

This field shall specify 2.

Partition Map Length (RBP 1) removefromTOC

This field shall specify 64.

Partition Identifier (RBP 2) removefromTOC

This field shall specify an identification of the partition in a manner subject to agreement between the originator and recipient of the medium.

Unallocated Space Descriptor

The Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� shall specify extents that are unallocated. It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VUnallocated_Space_Descriptor_format * MERGEFORMAT �20�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=7)��16�4�Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Number of Allocation Descriptor�xe "Allocation Descriptor"�s (=N_AD)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��24�N_AD(8�Allocation Descriptor�xe "Allocation Descriptor"� s�extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��Figure � SEQ SEQ_FIGURE_VolumeStructure �20� - Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

The Tag Identifier field of the tag (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 7.

Volume Descriptor Sequence Number (BP 16) removefromTOC

This field shall specify the Volume Descriptor Sequence Number for this descriptor.

Number of Allocation Descriptors (=N_AD) (BP 20) removefromTOC

�xe "Allocation Descriptor"�This field shall specify the number of allocation descriptors recorded in this descriptor.

Allocation Descriptors (BP 24) removefromTOC

�xe "Allocation Descriptor"�This field shall contain N_AD extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�) descriptors. The Extent Length fields in these descriptors shall be an integral multiple of the logical sector�xe "logical sector"��xe "sector"� size�xe "logical sector:size"�.

Note �SEQ Note *MERGEFORMAT�21�

As specified by � ref part_Volume �3�/� ref VRecording_of_Descriptors \n �8.4.4�, the remainder of the last logical sector�xe "logical sector"��xe "sector"� comprising the Unallocated Space�xe "unallocated Space"� Descriptor�xe "Unallocated Space Descriptor"� is recorded with #00 bytes.

Terminating Descriptor

A Terminating Descriptor�xe "Terminating Descriptor"� may be recorded to terminate a Volume Descriptor Sequence�xe "Volume Descriptor Sequence"� (see � ref part_Volume �3�/� ref VVolume_Descriptor_Sequence_Recording \n �8.4.2�). It shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VTerminating_Descriptor_format * MERGEFORMAT �21�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=8)��16�496�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �21� - Terminating Descriptor�xe "Terminating Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 8.

Reserved (BP 16) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Logical Volume Integrity Descriptor

The Logical Volume Integrity Descriptor�xe "Logical Volume Integrity Descriptor"� shall specify the integrity status of a logical volume�xe "logical volume"� and shall be recorded in the format shown in figure � ref part_Volume �3�/� REF VLogical_Volume_Integrity_format * MERGEFORMAT �22�. In the following description, the term “the associated logical volume” shall refer to the logical volume described by the Logical Volume Descriptor�xe "Logical Volume Descriptor"� specifying the Logical Volume Integrity Sequence�xe "Logical Volume Integrity Sequence"� in which this descriptor is recorded.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=9)��16�12�Recording Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��28�4�Integrity Type�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��32�8�Next Integrity Extent�extent�xe "extent"�_ad (� ref part_Volume �3�/� ref Vextent_ad \n �7.1�)��40�32�Logical Volume Contents Use�bytes��72�4�Number of Partitions (=N_P)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��76�4�Length of Implementation Use�xe "implementation use"� (=L_IU)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��80�N_P(4�Free Space Table�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��N_P(4(80�N_P(4�Size Table�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��N_P(8(80�L_IU�Implementation Use�bytes��Figure � SEQ SEQ_FIGURE_VolumeStructure �22� - Logical Volume Integrity format

Descriptor Tag (BP 0) removefromTOC

The Tag Identifier field of the tag (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 9.

Recording Date and Time (BP 16) removefromTOC

This field shall specify the date and time of the day at which this descriptor was recorded.

Integrity Type (BP 28) removefromTOC

This field shall specify the type of Integrity Descriptor. The types are shown in figure � ref part_Volume �3�/� REF VLogical_Volume_Integrity_type * MERGEFORMAT �23�.

Type�Interpretation��0�Shall mean that the descriptor is an Open Integrity�xe "integrity:open"� Descriptor ��1�Shall mean that the descriptor is a Close Integrity�xe "integrity:close"� Descriptor��2-255�Reserved for future standardisation��Figure � SEQ SEQ_FIGURE_VolumeStructure �23� - Logical Volume Integrity type

Next Integrity Extent (BP 32) removefromTOC

This field shall specify the next extent�xe "extent"� of the Logical Volume Integrity Sequence�xe "Logical Volume Integrity Sequence"�. The extent shall be within the volume in which this descriptor is recorded within. If the extent’s length is 0, no such extent is specified.

Logical Volume Contents Use (BP 40) removefromTOC

This field shall specify information required for interpretation of the information recorded on the associated logical volume�xe "logical volume"�. The contents of this field shall be specified by the relevant standard for the interpretation of the information recorded on the associated logical volume.

Number of Partitions (=N_P) (BP 72) removefromTOC

This field shall specify the number of partitions in the associated logical volume�xe "logical volume"�.

Length of Implementation Use (=L_IU) (BP 76) removefromTOC

This field shall specify the length, in bytes, of the Implementation Use�xe "implementation use"� field.

Free Space Table (BP 80) removefromTOC

�xe "space:table"�This field shall contain N_P values, each recorded as a Uint32, recorded contiguously starting at the first byte of the field. The ith value specifies the amount of available space, in logical block�xe "logical block"�s, on the partition specified by the ith entry in the Partition Maps field in the associated Logical volume�xe "logical volume"� Descriptor. A value of #FFFFFFFF shall mean that the amount of available space is not specified.

Size Table (BP N_P(4(80) removefromTOC

This field shall contain N_P values, each recorded as a Uint32, recorded contiguously starting at the first byte of the field. The ith value specifies the size, in logical block�xe "logical block"�s, of the partition specified by the ith entry in the Partition Maps field in the associated Logical volume�xe "logical volume"� Descriptor. A value of #FFFFFFFF shall mean that the size is not specified.

Implementation Use (BP N_P(8(80) removefromTOC

�xe "implementation use"�If L_IU is greater than 0, this field shall specify an identification of an implementation, recorded as a regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) in the first 32 bytes of this field, which can recognise and act upon the remainder of this field, which shall be reserved for implementation use and its contents are not specified by this ECMA standard. The scope�xe "scope"� of this regid shall be the contents of this descriptor, the contents of the associated Logical volume�xe "logical volume"� Descriptor, and the contents of the associated logical volume.

Levels of medium interchange

Part � ref part_Volume �3� specifies three levels of medium interchange. The level of a volume shall be that level specifying the most restrictions required to record the volume according to the specifications of Part � ref part_Volume �3�.

In the following level specifications, N is the largest logical sector�xe "logical sector"��xe "sector"� number�xe "logical sector:number"��xe "sector:number"� of a volume.

Level 1

At level 1, the following restrictions�xe "restrictions"� shall apply:

an Anchor Volume Descriptor Pointer�xe "Anchor Volume Descriptor Pointer"��xe "Volume Descriptor Pointer"� shall be recorded at logical sector�xe "logical sector"��xe "sector"� 256 and at logical sector N(256

the Volume Descriptor Sequence�xe "Volume Descriptor Sequence"�s specified by the anchor Volume Descriptor Pointer�xe "Volume Descriptor Pointer"� recorded at logical sector�xe "logical sector"��xe "sector"� 256 and logical sector N(256 shall be recorded in a single extent�xe "extent"�

a Logical Volume Descriptor�xe "Logical Volume Descriptor"� shall contain only Type 1 Partition Maps

the partitions specified in any Logical Volume Descriptor�xe "Logical Volume Descriptor"�, catenated together in their recorded order, shall form a single extent�xe "extent"�

there shall be exactly one Primary Volume Descriptor�xe "Primary Volume Descriptor"� in the Main Volume Descriptor Sequence�xe "Volume Descriptor Sequence:main"��xe "Volume Descriptor Sequence"�

there shall be at most one Implementation Use�xe "implementation use"� Volume Descriptor�xe "Implementation Use Volume Descriptor"� in the Main Volume Descriptor Sequence

there shall be at most one Partition Descriptor with any given Partition Number in the Main Volume Descriptor Sequence

a volume set shall consist of only one volume.

Note �SEQ Note *MERGEFORMAT�22�

This interchange level provides a simple volume structure.

Level 2

At level 2, the following restriction shall apply:

a volume set shall consist of only one volume.

Level 3

At Level 3, no restrictions shall apply.

��tc "Section 3 - Requirements for systems for volume structure" \l 1 \n �

Section 3 - Requirements�xe "requirements"� for systems for volume structure

Requirements for the description of systems

Part � ref part_Volume �3� specifies that certain information shall be communicated between a user and an implementation. Each implementation that conforms to Part � ref part_Volume �3� shall have a description that identifies the means by which the user may supply or obtain such information.

Note �SEQ Note *MERGEFORMAT�23�

The specifics of the description and the means referred to above will vary from implementation to implementation. For example, an implementation might support two interfaces: a preferred, convenient interface which might vet user input�xe "input"�, and a deprecated low level interface which allows any input specified by Part � ref part_Volume �3�.

Requirements for an originating system

�xe "requirements"��xe "system:originating"�

General

The implementation shall be capable of recording all descriptors specified in � ref part_Volume �3�/� ref VVolume_Data_Structures \n �10� on a volume set�xe "volume set"� according to one of the medium interchange�xe "interchange"� level�xe "medium interchange level"�s specified in � ref part_Volume �3�/� ref VLevels_of_Medium_Interchange \n �11�.

The descriptor tag version in all descriptors shall be recorded with a value of 3 (see � ref part_Volume �3�/� ref VDescriptor_Version \n �7.2.2�).

The implementation shall not change the Maximum Interchange Level field nor the Maximum Character Set�xe "character set"� List field in a Primary Volume Descriptor�xe "Primary Volume Descriptor"� except when directed to do so by the user.

The implementation shall be capable of recording a list of character set�xe "character set"�s (see � ref part_General �1�/� ref Gcharset \n �7.2.11�) in which the bit for Character Set Type CS2�xe "character set:CS2"� shall be set to ONE.

If the user specifies a volume without specifying which Primary Volume Descriptor�xe "Primary Volume Descriptor"� to use, then the implementation shall use the Primary Volume Descriptor having Primary Volume Descriptor Number 0.

The implementation may only alter the Dirty or Protected bits of any regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) field of a descriptor specified by Part � ref part_Volume �3� when directed to do so by the user.

If any information in the scope�xe "scope"� of a regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) is modified and the implementation cannot ensure that the information recorded within the scope of that regid still conforms to the agreement implied by the identification in that regid, then, when directed to do so by the user, the implementation shall set the Dirty bit of the Flags�xe "flags"� field of that regid to ONE and should not alter the Identifier field of that regid.

Mandatory access by user

Descriptors

The implementation shall allow the user to supply the information that is to be recorded in each of the following descriptor fields, and shall supply the information for a field if the user does not supply it.

Primary Volume Descriptor�xe "Primary Volume Descriptor"�

Primary Volume Descriptor Number

Volume Identifier

Volume Sequence Number

Maximum Volume Sequence Number

Maximum Interchange Level

Maximum Character Set List

Volume Set Identifier

Descriptor Character Set

Partition Descriptor�xe "Partition Descriptor"�

Partition Number�xe "partition:number"�

Partition Contents

Access Type

Partition Starting Location

Partition Length

Logical Volume Descriptor�xe "Logical Volume Descriptor"�

Descriptor Character Set�xe "character set"�

Logical Volume Identifier

Logical Block�xe "logical block"� Size

Number of Partition Maps

Partition Maps

Optional access by user

If the implementation permits the user to supply the information that is to be recorded in the extents, if any, specified by the Volume Copyright Notice�xe "copyright"� and Volume Abstract�xe "abstract"� fields in a Primary Volume Descriptor�xe "Primary Volume Descriptor"�, the implementation shall record such information as supplied by the user.

Descriptors

If the implementation permits the user to supply the information that is to be recorded in any of the following descriptor fields, the implementation shall record such information as supplied by the user, and shall supply the information for a field if the user does not supply it.

Primary Volume Descriptor�xe "Primary Volume Descriptor"�

Character Set�xe "character set"� List

Explanatory Character Set�xe "character set"�

Application�xe "application"� Identifier�xe "application:identifier"�

Logical Volume Descriptor�xe "Logical Volume Descriptor"�

Domain Identifier

Multivolume volume sets

�xe "volume set"�The implementation shall not be required to record information on the volumes of a volume set that have been assigned a sequence number n, where 1 (n < m, after any information has been recorded on the volume of the volume set that has been assigned sequence number m.

The implementation shall not be required to record information on the volume of a volume set�xe "volume set"� that has been assigned sequence number m+1 if there is sufficient space to record the information on the volume that has been assigned a sequence number n, where 1 (n (m.

Requirements for a receiving system

�xe "requirements"��xe "system:receiving"�

General

The implementation shall be capable of interpreting all descriptors as specified in � ref part_Volume �3�/� ref VVolume_Data_Structures \n �10� on a volume set according to one of the medium interchange levels specified in Part � ref part_Volume �3�.

The implementation shall be capable of interpreting all descriptors recorded with a Descriptor Version of 2 or 3 (see � ref part_Volume �3�/� ref VDescriptor_Version \n �7.2.2�).

If the user specifies a volume without specifying which Primary Volume Descriptor to use, then the implementation shall use the Primary Volume Descriptor having Primary Volume Descriptor Number 0.

Mandatory access by user

Descriptors

The implementation shall make available to the user the information that is recorded in the extent�xe "extent"�, if any, specified by the Volume Copyright Notice�xe "copyright"� and Volume Abstract�xe "abstract"� fields in a Primary Volume Descriptor�xe "Primary Volume Descriptor"�.

The implementation shall allow the user to access the information that is recorded in each of the following descriptor fields

Primary Volume Descriptor�xe "Primary Volume Descriptor"�

Volume Identifier

Volume Sequence Number

Maximum Volume Sequence Number

Interchange Level

Maximum Interchange Level

Maximum Character Set�xe "character set"� List

Volume Set�xe "volume set"� Identifier

Descriptor Character Set�xe "character set"�

Explanatory Character Set�xe "character set"�

Partition Descriptor

Partition Number

Partition Contents

Access Type

Partition Starting Location

Partition Length

Logical Volume Descriptor

Logical Volume Identifier

Domain Identifier

�Annex � seq Annex * Alphabetic \r 1 �A�

(informative)

Changes from ECMA 167/2 to this standard

� tc “Annex � seq Annex \c * Alphabetic�A�: Changes from ECMA 167/2” \l 1 �

NSR descriptors were updated from NSR02 to NSR03.

Descriptor Tag version was updated from 2 to 3. A value of two is allowed for legacy media.

A set of Tag Identifiers was set aside for implementation use.

Volume Descriptors are now allowed within write once or read-only partitions.

�Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � seq Part �4� : File structure

� tc “� ref part_File_long * mergeformat �Part 4 : File structure�” \n�

�� tc “Section 1 - General” \n �

Section 1 - General

Scope

�xe "scope"�Part � ref part_File �4� specifies a format and associated system requirements�xe "requirements"� for file structure�xe "file structure"� by specifying:

the placement of files;

the attributes of the files;

the relationship among files of a logical volume�xe "logical volume"�;

levels of medium interchange�xe "interchange"�;

requirements�xe "requirements"� for the processes which are provided within information processing systems, to enable information to be interchanged between different systems; for this purpose, it specifies the functions to be provided within systems which are intended to originate or receive media which conform to Part � ref part_File �4�.

Parts references

See � ref part_General �1�/� ref GParts_Reference \n �2�.

Part interface

This clause specifies the interface of Part � ref part_File �4� to other standards or Parts.

Input

�xe "input"�Part � ref part_File �4� requires the specification of the following by another standard or Part.

Volume sets of one or more volumes.

A means for assigning volume sequence numbers (see � ref part_File �4�/� ref FVolume_Set \n �8.1�).

Logical volumes composed of partitions.

Numeric identification of the partitions within a logical volume.�xe "logical volume"�.

If the volume is recorded according to Part � ref part_Volume �3�, the partitions shall be numbered according to � ref part_Volume �3�/� ref VLogical_Volume \n �8.8�.

Identification of a logical volume�xe "logical volume"� on which one or more file set�xe "file set"�s may be recorded.

Division of the partitions for a logical volume�xe "logical volume"� into fixed size logical block�xe "logical block"�s.

Numeric identification of the logical block�xe "logical block"�s within a partition.

The size of a logical block�xe "logical block"� for a logical volume�xe "logical volume"�. This shall be an integral multiple of 512.

A means for detecting if a logical block�xe "logical block"� is unrecorded.

If the volume is recorded according to Part � ref part_Volume �3�, a logical block�xe "logical block"� shall be unrecorded if all of the logical sector�xe "logical sector"��xe "sector"�s comprising that logical block are unrecorded. A logical block should either be completely recorded or unrecorded.

A means for identifying the first extent�xe "extent"� of the File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Sequence�xe "File Set Descriptor Sequence"� (see � ref part_File �4�/� ref FFile_Set_Descriptor_Sequence \n �8.3.1�) of a logical volume�xe "logical volume"�;

If the volume is recorded according to Part � ref part_Volume �3�, the extent�xe "extent"� in which the first File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Sequence�xe "File Set Descriptor Sequence"� of the logical volume�xe "logical volume"� is recorded shall be identified by a long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) recorded in the Logical Volume Contents Use field (see � ref part_Volume �3�/� ref VLogical_Volume_Contents_Use \n �10.6.7�) of the Logical Volume Descriptor�xe "Logical Volume Descriptor"� describing the logical volume in which the File Set Descriptors are recorded.

A means for specifying the Logical Volume Header Descriptor�xe "Logical Volume Header Descriptor"� (see � ref part_File �4�/� ref FLogical_Volume_Header_Descriptor \n �14.15�) of a logical volume�xe "logical volume"�.

If the volume is recorded according to Part � ref part_Volume �3�, the Logical Volume Header descriptor shall be recorded in the Logical Volume Contents Use field (see � ref part_Volume �3�/� ref VLVID_Logical_Volume_Contents_Use \n �10.10.5�) of the prevailing�xe "prevailing"� Logical Volume Integrity Descriptor�xe "Logical Volume Integrity Descriptor"� for the logical volume�xe "logical volume"�.

A means for identifying the following for each partition of the logical volume�xe "logical volume"� on which a file set�xe "file set"� is recorded:

Unallocated Space�xe "unallocated Space"� Table�xe "space:table"� and Unallocated Bit Map (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�)

Freed Space�xe "freed space"� Table�xe "space:table"� and Freed Bit Map (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�)

Partition Integrity Table (see � ref part_File �4�/� ref FPartition_Integrity \n �11�)

If the volume is recorded according to Part � ref part_Volume �3�, the Partition Contents Use field (see � ref part_Volume �3�/� ref VPartition_Contents_Use \n �10.5.6�) of the Partition Descriptor�xe "Partition Descriptor"� (see � ref part_Volume �3�/� ref VPartition_Descriptor \n �10.5�) describing the partition shall be recorded as a Partition Header Descriptor�xe "Partition Header Descriptor"� (see � ref part_File �4�/� ref FPartition_Header_Descriptor \n �14.3�). Such a Partition Descriptor shall have “+NSR03” recorded in the Partition Contents field.

Output

�xe "output"�Part � ref part_File �4� specifies the following which may be used by other standards or Parts.

Data space�xe "data space"� of a file (see � ref part_File �4�/� ref FData_Space_of_a_File \n �8.8.2�).

Attributes of a file.

Attributes of a directory�xe "directory"�.

Attributes of a directory�xe "directory"� hierarchy�xe "directory:hierarchy"�.

Conformance

See � ref part_General �1�/� ref GConformance \n �3�.�xe "conformance"�

Definitions

In addition to the definitions of Part � ref part_General �1� (see � ref part_General �1�/� ref GDefinitions \n �5�), the following definitions apply for Part � ref part_File �4�.

extent

A set of logical blocks, the logical block numbers of which form a continuous ascending sequence. The address, or location, of an extent is the number of the first logical block in the sequence.

file set

A collection of files and directories.

group ID

An identification of a group of users.

logical block

The unit of allocation of a logical volume.

logical volume

A non-empty set of partitions over which one or more file sets are recorded.

partition

An extent of logical blocks within a volume.

stream

A data component of a file.

user ID

An identification of a user.

Notation

The notation�xe "notation"� of Part � ref part_General �1� (see � ref part_General �1�/� ref GNotation \n �6�) applies to Part � ref part_File �4�.

Basic types

In addition to the basic type�xe "basic type"�s of Part � ref part_General �1� (see � ref part_General �1�/� ref GBasic_Types \n �7�), the following basic types apply for Part � ref part_File �4�.

Recorded address

A logical block�xe "logical block"� address may be specified by an lb_addr recorded in the format shown in figure � ref part_File �4�/� REF Flb_addr_format * MERGEFORMAT �1�.

RBP�Length�Name�Contents��0�4�Logical Block�xe "logical block"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�2�Partition Reference Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��Figure � SEQ SEQ_FIGURE_FileStructure �1� - lb_addr format

Logical Block Number (RBP 0) removefromTOC

This field specifies the logical block number relative to the start of the partition identified by the Partition Reference Number field. The value 0 shall refer to the first logical block in the partition.

Partition Reference Number (RBP 4) removefromTOC

This field contains the numeric identification of a partition within a logical volume�xe "logical volume"� (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�).

Descriptor Tag

�xe "Descriptor Tag"�Certain descriptors specified in Part � ref part_File �4� have a 16 byte structure, or tag�xe "tag"�, at the start of the descriptor with the format given in figure � ref part_File �4�/� REF Ftag_format * MERGEFORMAT �2�.

Note �SEQ Note \r 1 *MERGEFORMAT�1�

There are two main motivations for using a general tag�xe "tag"� structure. The first is that most descriptors need a generic way to handle issues of CRCs and format versions. The second motivation is to support recovery after the medium has been damaged or corrupted in some (unspecified) way. With the tag described here, structures are self identifying and can be verified with very little context.

RBP�Length�Name�Contents��0�2�Tag Identifier�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��2�2�Descriptor Version�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��4�1�Tag Checksum�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��5�1�Reserved�#00 byte��6�2�Tag Serial Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��8�2�Descriptor CRC�xe "CRC"� �Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��10�2�Descriptor CRC�xe "CRC"� Length�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��12�4�Tag Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_FileStructure �2� - tag�xe "tag"� format

Tag Identifier (RBP 0) removefromTOC

This field shall specify an identification of the descriptor type. Type 0 shall specify that the format of this descriptor is not specified by Part � ref part_File �4�. Types 1-7 and 9 are specified in Part � ref part_Volume �3�. Type 8 is specified identically in Part � ref part_Volume �3� and Part � ref part_File �4�. Types 256-266 are specified in Part � ref part_File �4�. All other types are reserved for future standardisation. The descriptor types specified by Part � ref part_File �4� are shown in figure � ref part_File �4�/� REF FDescriptor_interpretation * MERGEFORMAT �3�.

Type�Interpretation��8�Terminating Descriptor�xe "Terminating Descriptor"� (� ref part_Volume �3�/� ref VTerminating_Descriptor \n �10.9� and � ref part_File �4�/� ref FTerminating_Descriptor \n �14.2�)��256�File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� (� ref part_File �4�/� ref FFile_Set_Descriptor \n �14.1�)��257�File Identifier Descriptor�xe "File Identifier Descriptor"� (� ref part_File �4�/� ref FFile_Identifier_Descriptor \n �14.4�)��258�Allocation Extent Descriptor�xe "Allocation Extent Descriptor"��xe "Extent Descriptor"� (� ref part_File �4�/� ref FAllocation_Extent_Descriptor \n �14.5�)��259�Indirect Entry�xe "indirect entry"� (� ref part_File �4�/� ref FIndirect_Entry \n �14.7�)��260�Terminal Entry�xe "Terminal Entry"� (� ref part_File �4�/� ref FTerminating_Entry \n �14.8�)��261�File Entry�xe "File Entry"� (� ref part_File �4�/� ref FFile_Entry \n �14.9�)��262�Extended Attribute�xe "extended attribute"� Header Descriptor�xe "Extended Attribute Header Descriptor"��xe "Attribute Header Descriptor"� (� ref part_File �4�/� ref FExtended_Attribute_Header_Descriptor \n �14.10.1�)��263�Unallocated Space�xe "unallocated Space"� Entry�xe "unallocated space:entry"��xe "space:entry"� (� ref part_File �4�/� ref FUnallocated_Space_Entry \n �14.11�)��264�Space Bitmap�xe "space:bitmap"� Descriptor�xe "Space Bitmap Descriptor"��xe "Bitmap Descriptor"� (� ref part_File �4�/� ref FSpace_Bitmap_Descriptor \n �14.12�)��265�Partition Integrity Entry (� ref part_File �4�/� ref FPartition_Integrity_Entry \n �14.13�)��266�Extended File Entry (� ref part_File �4�/� ref FExtended_File_Entry \n �14.17�)��Figure � SEQ SEQ_FIGURE_FileStructure �3� - Descriptor interpretation

Descriptor Version (RBP 2) removefromTOC

This field shall specify the version of this descriptor. This value shall be 2 or 3. The value 3 shall indicate the structure of Part � ref part_File �4�. The value 2 shall indicate the structure of Part 4 of ECMA-167/2. See � ref part_File �4�/� ref FRequirements_General \n �17.1� and � ref part_File �4�/� ref FRequirements_Receiving_General \n �18.1� for requirements.

Note � seq Note �2�:

Structures with version 2 descriptors may be on the medium due to changing the medium from NSR02 to NSR03 without rewriting all descriptors as version 3. Originating systems shall record a 3 in this field; receiving systems shall allow a 2 or 3. (see � ref part_File �4�/� ref FRequirements_General \n �17.1� and � ref part_File �4�/� ref FRequirements_Receiving_General \n �18.1�)

Tag Checksum (RBP 4) removefromTOC

This field shall specify the sum modulo 256 of bytes 0-3 and 5-15 of the tag.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and shall be set to #00.

Tag Serial Number (RBP 6) removefromTOC

This field shall specify an identification of a set of descriptors. If the field contains 0, then no such identification is specified.

Note �SEQ Note *MERGEFORMAT�3�

This field can be used to distinguish between groups of descriptors. For example, when reusing rewritable media�xe "rewritable media"�, an implementation might choose a different serial number from the previous use when initialising a volume. Thus, a disaster recovery�xe "disaster recovery"� mechanism can avoid recovering prior and unintended data. The only alternative to this scheme would be to force volume initialisation to clear the volume.

Descriptor CRC (RBP 8) removefromTOC

This field shall specify the CRC�xe "CRC"� of the bytes of the descriptor starting at the first byte after the descriptor tag�xe "tag"�. The number of bytes shall be specified by the Descriptor CRC Length field. The CRC shall be 16 bits long and be generated by the CRC-ITU�T polynomial (see ITU�T V.41):

x16 + x12 + x5 + 1

Note �SEQ Note *MERGEFORMAT�4�

As an example, the CRC�xe "CRC"� of the three bytes #70 #6A #77 is #3299. Implementations can avoid calculating the CRC by setting the Descriptor CRC Length to 0, as then the Descriptor CRC shall be 0.

Descriptor CRC Length (RBP 10) removefromTOC

This field specifies how many bytes were used in calculating the Descriptor CRC�xe "CRC"�.

Tag Location (RBP 12) removefromTOC

This field shall specify the number of the logical block�xe "logical block"�, within the partition the descriptor is recorded on, containing the first byte of the descriptor.

Note �SEQ Note *MERGEFORMAT�5�

The location of the tag�xe "tag"� may appear to be redundant but its primary purpose is to make it extremely likely that if the first 16 bytes of a logical sector�xe "logical sector"��xe "sector"� or logical block is a consistent descriptor tag, then it is a descriptor tag.

��tc "Section 2 - Requirements for the medium for file structure" \l 1 \n �

Section 2 - Requirements�xe "requirements"� for the medium for file structure�xe "file structure"�

File structure

Volume set

Each volume in a volume set�xe "volume set"� shall have an assigned volume sequence number as specified in � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�.

Arrangement of information on a volume set

A logical volume�xe "logical volume"� and its related file set�xe "file set"�s shall be recorded on a volume set�xe "volume set"�. Identification of the logical volumes (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�) and related File Set Descriptor�xe "File Set Descriptor"�s for all the logical volumes in a volume set shall be recorded in the volume with the highest volume sequence number in the volume set.

Arrangement of information on a logical volume

Part � ref part_File �4� takes a logical volume�xe "logical volume"� to be a set of partitions on one or more volumes. Each partition shall be considered as an extent�xe "extent"� of logical block�xe "logical block"�s, and shall have an identification as specified in the input�xe "input"� parameters for Part � ref part_File �4� (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�). An address within a logical volume has two parts; one part identifies a partition within the logical volume and the other part specifies a logical block number�xe "logical block:number"� relative to the start of that partition.

File Set Descriptor Sequence

A File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Sequence�xe "File Set Descriptor Sequence"� shall be recorded as a sequence of extents within a logical volume�xe "logical volume"�. An extent�xe "extent"� of the File Set Descriptor Sequence shall be recorded according to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FFile_Set_Descriptor_Sequence_schema * MERGEFORMAT �4�.

[File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Sequence�xe "File Set Descriptor Sequence"� extent�xe "extent"�]{

	<File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�>0+

	[Terminator]{

		 <File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�>

		| <Terminating Descriptor�xe "Terminating Descriptor"�>

		| <unrecorded logical block�xe "logical block:unrecorded"��xe "logical block"�>

	} <trailing logical block�xe "logical block"�>0+

} 0+

Figure � SEQ SEQ_FIGURE_FileStructure �4� - File set descriptor sequence�xe "directory"� schema�xe "schema"�

The first extent�xe "extent"� of the sequence shall be identified by the input�xe "input"� parameters (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�) of Part � ref part_File �4�. Each, if any, subsequent extent of the sequence shall be identified by the Next Extent field of a File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�. An extent of the sequence shall be terminated by either an unrecorded logical block�xe "logical block:unrecorded"��xe "logical block"� (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�), a Terminating Descriptor�xe "Terminating Descriptor"� (see � ref part_File �4�/� ref FTerminating_Descriptor \n �14.2�), or by a File Set Descriptor whose Next Extent field identifies a subsequent extent of the sequence.

All File Set Descriptors shall have an assigned file set descriptor number. All File Set Descriptors with identical file set descriptor numbers shall have identical contents.

All file sets shall have an assigned file set number. Of the File Set Descriptors of a File Set Descriptor Sequence with identical file set numbers, the one with the highest file set descriptor number shall be used. This instance shall be referred to as the prevailing instance.

One of the File Set Descriptors of a File Set Descriptor Sequence shall have a file set number of 0.

A File Set Descriptor shall specify a file set identification. No prevailing instance of a File Set Descriptor shall specify the same file set identification as any other prevailing instance of a File Set Descriptor.

Arrangement of information on a partition

A means for identifying the location of the following for each partition of the logical volume�xe "logical volume"� on which a file set�xe "file set"� is recorded shall be specified by the input�xe "input"� parameters (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�) of Part � ref part_File �4�.

Unallocated Space�xe "unallocated Space"� Table�xe "space:table"� and Unallocated Bit Map (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�)

Freed Space�xe "freed space"� Table�xe "space:table"� and Freed Bit Map (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�)

Partition Integrity Table (see � ref part_File �4�/� ref FPartition_Integrity \n �11�)

File set

A file set�xe "file set"� shall be identified by a File Set Descriptor�xe "File Set Descriptor"� which identifies the root of a directory�xe "directory"� hierarchy�xe "directory:hierarchy"� (see � ref part_File �4�/� ref FDirectories \n �8.6�) describing a set of files and certain attributes of the file set. A prevailing�xe "prevailing"� File Set Descriptor specifies

the name of the logical volume�xe "logical volume"� it is recorded on

the set of characters allowed in certain fields of descriptors associated with the file set�xe "file set"� identified by the File Set Descriptor�xe "File Set Descriptor"�

an identification of the root of the directory�xe "directory"� hierarchy�xe "directory:hierarchy"� describing the files of the file set�xe "file set"� identified by the File Set Descriptor�xe "File Set Descriptor"�

copyright�xe "copyright"� and abstract�xe "abstract"� information for the file set�xe "file set"�.

Directories

A directory�xe "directory"� contains zero or more file or directory identifications. A directory hierarchy�xe "directory:hierarchy"� shall be a set of directories descended from a single root directory�xe "directory:root"�.

A directory�xe "directory"� shall contain a set of directory descriptor�xe "directory:descriptor"�s, each of which identifies a parent directory�xe "parent:directory"� or a component file or a component subdirectory. A directory descriptor that identifies a parent directory or a component file or subdirectory by specifying the address of an ICB�xe "ICB"� (see � ref part_File �4�/� ref FICB_hierarchy \n �8.10.1�) for that component shall be recorded as a File Identifier Descriptor�xe "File Identifier Descriptor"� (see � ref part_File �4�/� ref FFile_Identifier_Descriptor \n �14.4�). A directory descriptor that identifies a component file or subdirectory of the directory by specifying the pathname�xe "pathname"� of the actual file or directory shall be referred to as an alias�xe "alias"� and shall be recorded as a File Identifier Descriptor specifying a file whose type is a symbolic link�xe "symbolic link"� (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�).

A directory�xe "directory"� identifying another directory by other than an alias�xe "alias"� shall be called a parent directory�xe "parent:directory"� of the identified directory. The identified directory shall be called a subdirectory of the parent directory. Different directories may have the same parent directory. A directory shall have only one parent directory. The parent directory of the root directory�xe "directory:root"� shall be the root directory.

Each directory�xe "directory"� descriptor�xe "directory:descriptor"� shall specify the name of a component file or the name of a component subdirectory, or identify the parent directory�xe "parent:directory"� of the directory. The length, in bytes, of the name of a component file or subdirectory shall be greater than 0. Each directory descriptor shall contain an indication of whether the identified component is a directory. When the descriptor identifies an alias, this indication is contained in the directory descriptor for the file or directory identified by the pathname specified by the alias.

A directory shall be recorded according to the schema shown in figure � ref part_File �4�/� REF FDirectory_schema * MERGEFORMAT �5�.

{

	<File Identifier Descriptor>

} 0+

Figure � SEQ SEQ_FIGURE_FileStructure �5� - Directory schema

For the descriptors in a directory

there shall not be more than one descriptor with the same File Identifier (see � ref part_File �4�/� ref FFile_Identifier \n �14.4.8�) and File Version Number (see � ref part_File �4�/� ref FFile_Version_Number \n �14.4.2�).

a descriptor identifying a directory shall have a File Version Number of 1.

there shall be exactly one File Identifier Descriptor�xe "File Identifier Descriptor"� identifying the parent directory �xe "parent:directory"��xe "directory"�(see � ref part_File �4�/� ref FFile_Characteristics_section \n �14.4.3�).

the descriptors shall be ordered according to � ref part_File �4�/� ref FDirectory_Order \n �8.6.1� and � ref part_File �4�/� ref FICB_Flags \n �14.6.8�.

A File Entry�xe "File Entry"� specifying a file in which a directory�xe "directory"� is recorded shall not specify a Character Set�xe "character set"� Information Extended Attribute�xe "extended attribute:Character Set Information"��xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�6�

The character set�xe "character set"� specifying the d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�) used in the directory�xe "directory"� descriptor�xe "directory:descriptor"�s is specified in the File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� for the directory hierarchy�xe "directory:hierarchy"� of which the directory is a member.

Order of directory descriptors

If the directory�xe "directory"� descriptor�xe "directory:descriptor"�s of a directory are sorted�xe "sorting"� according to Part � ref part_File �4�, they shall be ordered by the following criteria in descending order of significance:

In ascending order according to the relative value of File Identifier, where File Identifiers shall be valued as follows:

If the File Identifiers being compared have the same value in all byte positions, the File Identifiers shall be equal in value.

If the File Identifiers being compared do not contain the same number of byte positions, the File Identifiers shall be treated as if they are of equal length by padding�xe "padding"� the shorter File Identifier on the right with #00 bytes. After any such padding, the File Identifiers shall be compared one byte at a time, in ascending byte position order, until a byte position is found that does not contain the same value in both File Identifiers. The File Identifier with the greater byte value, comparing values of the bytes as unsigned integers, shall be considered greater.

In descending order according to the relative value of File Version Number.

Note �SEQ Note *MERGEFORMAT�7�

Sorting�xe "sorting"� applies to files and aliases having been marked as deleted in the File Characteristics field. The order is independent of the charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�) applying to the directory�xe "directory"� because the File Identifiers are sorted as if they were binary values.

Directory hierarchy size restrictions

�xe "directory:hierarchy size restrictions"��xe "restrictions"�The sum of the number of directories�xe "directory"� and the number of files described by the directories of a directory hierarchy�xe "directory:hierarchy"� shall be less than 232.

Pathname

A pathname�xe "pathname"� may be used to specify a file or directory�xe "directory"� by name. The length, in bytes, of this pathname shall be greater than 0. The pathname shall consist of a sequence of one or more path components (see � ref part_File �4�/� ref FPathname \n �14.16�) as follows:

Unless otherwise specified, a component shall be interpreted relative to the directory specified by its predecessor. The predecessor of the initial component shall be the directory in which the pathname is described.

The final component shall specify either a directory, or a file, or an alias which resolves to either a directory or file.

Each other component shall specify either a directory or an alias which resolves to a directory.

Resolved pathname

Within a directory�xe "directory"� hierarchy�xe "directory:hierarchy"�, every pathname�xe "pathname"� specifying a file or directory has an equivalent resolved pathname�xe "pathname:resolved"�. A resolved pathname is a pathname where

the first component is a Path Component�xe "Path Component"� with a Component Type of 2.

each other component is a Path Component�xe "Path Component"� with a Component Type of 5 and is not an alias�xe "alias"�.

The length of a resolved pathname�xe "pathname:resolved"��xe "pathname"� shall be the sum of the following:

the value of the Component Identifier Length field for each component;

the number of components

Note �SEQ Note *MERGEFORMAT�8�

The resolved pathname�xe "pathname:resolved"��xe "pathname"� is mainly used in � ref part_File �4�/� ref FLevels_of_Medium_Interchange \n �15�. Note that the length defined here corresponds to that of a theoretical pathname, rather than a pathname that an implementation might use. In particular, it assumes that the component separator is one byte long, which is typically true but is false for certain character set�xe "character set"�s.

Note that the length of the resolved pathname�xe "pathname:resolved"��xe "pathname"� does not provide for the length of the file version�xe "version"� number associated with the final component of the pathname.

Files

A file shall be described by a File Entry�xe "File Entry"� (see � ref part_File �4�/� ref FFile_Entry \n �14.9�) or by an Extended File Entry (� ref part_File �4�/� ref FExtended_File_Entry \n �14.17�), which shall specify the attributes of the file and the location of the file's recorded data. The data of a file shall be recorded in either of the following:

An ordered sequence of extents of logical block�xe "logical block"�s (see short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�), long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) and ext_ad (� ref part_File �4�/� ref Fext_ad \n �14.14.3�). The extents may be recorded or unrecorded, and allocated or unallocated. The extents, if specified as long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) or ext_ad (� ref part_File �4�/� ref Fext_ad \n �14.14.3�), may be located on different partitions which may be on different volumes.

The Allocation Descriptor�xe "Allocation Descriptor"�s field of a File Entry�xe "File Entry"�.

Except where specified in Part � ref part_File �4�, neither the interpretation of the information in a file nor the structure of the information in a file is specified by Part � ref part_File �4�.

Attributes of a file

The File Entry�xe "File Entry"� specifies the attributes of a file. Some of the attributes shall be recorded in fields in the File Entry itself; the remainder shall be recorded as extended attribute�xe "extended attribute"�s. Extended attributes shall be recorded in extended attributes spaces as described in � ref part_File �4�/� ref FExtended_Attributes \n �9.1�. The attributes of a file specified by this Part are recorded in extended attributes, and in the following fields of a File Entry and of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) recorded as the contents of the ICB Tag field of the File Entry.

icbtag

Strategy Type

Strategy Parameter

File Type

Flags

File Entry

Uid

Gid

Permissions

File Link Count

Record�xe "record"� Format

Record�xe "record"� Display Attributes

Record�xe "record"� Length

Information Length

Logical Block�xe "logical block"�s Recorded

Access Date and Time�xe "time:access"�

Modification Date and Time

Attribute Date and Time

Checkpoint

Implementation Identifier

Note �SEQ Note *MERGEFORMAT�9�

The information in the File Identifier Descriptor�xe "File Identifier Descriptor"� (see � ref part_File �4�/� ref FFile_Characteristics_section \n �14.4.3�) for a file pertains only to the identification of the file and is not considered an attribute of the file.

Data space of a file

The data space�xe "data space"� of a file shall be the following:

If the file is recorded as the contents of an ordered sequence of extents of logical block�xe "logical block"�s, these extents shall be the data space�xe "data space"� of the file. The bytes in the data space shall be numbered with consecutive integers assigned in an ascending sequence. The numbering shall start from 0 which shall be assigned to the first byte of the first logical block of the first extent�xe "extent"�, if any, of the data space.

If the file is recorded in the Allocation Descriptor�xe "Allocation Descriptor"�s field of a File Entry�xe "File Entry"�, the number of bytes specified by the Length of Allocation Descriptors field of the File Entry starting with the first byte of the Allocation Descriptors field of the File Entry shall be the data space�xe "data space"� of the file. The bytes in the data space shall be numbered with consecutive integers assigned in an ascending sequence. The numbering shall start from 0 which shall be assigned to the first byte, if any, of the data space.

The number of bytes in the data space�xe "data space"� of a file shall be referred to as the information length�xe "information length"� of the file (see � ref part_File �4�/� ref FInformation_Length \n �14.9.10�).

Note �SEQ Note *MERGEFORMAT�10�

Some record�xe "record"� formats (see � ref part_File �4�/� ref FRecord_Format \n �14.9.7�) specify records of sequences of characters delimited by a specific character sequence. If detection of these delimiter sequences requires knowledge of the character set�xe "character set"� encoding, such as would be the case if code extension character�xe "character:code extension"�s (see � ref part_General �1�/� ref GCS7_code \n �7.2.9.1�) are used, then a Character Set Information extended attribute�xe "extended attribute"� should be recorded.

Streams of a File

A file consists of exactly one main data stream and zero or more named data streams. The main data stream is identified by the File Entry (see � ref part_File �4�/� ref FFile_Entry \n�14.9�) or Extended File Entry (see � ref part_File �4�/� ref FExtended_File_Entry \n�14.17�). The named streams are identified by a stream directory (see � ref part_File �4�/� ref FStream_Directory \n �9.2�). The stream directory is identified by the Stream Directory ICB field in the Extended File Entry (see � ref part_File �4�/� ref FStream_Directory_ICB \n�14.17.19�). Each entry in the stream directory identifies one of the streams of a file. The stream directory identifies the main data stream again with a parent entry.

Record structure

�xe "record"�The information in a file may be organised as a set of records according to � ref part_File �4�/� ref FRecord_Format \n �14.9.7�. The structure and attributes of these records are specified in Part � ref part_Record �5�. For the purposes of Part � ref part_Record �5�, the data space�xe "data space"� of a file is specified by � ref part_File �4�/� ref FData_Space_of_a_File \n �8.8.2� and

if the Character Set�xe "character set"� Information extended attribute�xe "extended attribute"� is specified for the file, then that extended attribute specifies how the bytes of the file�xe "data space"� shall be interpreted as characters,

if the Character Set Information extended attribute is not specified for the file, then each byte of the file shall be interpreted as a single character, and a byte containing #0A shall be a LINE FEED character, a byte containing #0B shall be a VERTICAL TABULATION character, a byte containing #0C shall be a FORM FEED character, and a byte containing #0D shall be a CARRIAGE RETURN character. These interpretations shall only apply for the purposes of partitioning the file's contents into records, and need not apply to the contents of those records.

Note �SEQ Note *MERGEFORMAT�11�

Some record formats (see Part � ref part_Record �5�) specify records delimited by a specific character sequence.

Information Control Block (ICB)

�xe "ICB"�Each recorded instance of a file shall be described by an entry in an Information Control Block (ICB). The set of entries describing the recorded instances of a file shall be described by entries in one or more ICBs. These ICBs shall form an ICB hierarchy as described in � ref part_File �4�/� ref FICB_hierarchy \n �8.10.1�.

An ICB�xe "ICB"� shall be a sequence of ICB entries recorded in an extent�xe "extent"� of logical block�xe "logical block"�s. The address or location of an ICB shall be the address of the extent. An entry of the sequence shall be one of the following:

a direct entry�xe "direct entry"�, describing a recorded occurrence of a file or a set of extents

an Indirect Entry�xe "indirect entry"� (� ref part_File �4�/� ref FIndirect_Entry \n �14.7�), describing another ICB�xe "ICB"�

a Terminal Entry�xe "Terminal Entry"� (� ref part_File �4�/� ref FTerminating_Entry \n �14.8�), indicating that there are no more entries recorded after this entry

an unrecorded logical block�xe "logical block:unrecorded"��xe "logical block"�, indicating that there are no more entries recorded after this entry

Each entry, other than an unrecorded logical block�xe "logical block:unrecorded"��xe "logical block"� entry, shall specify:

The maximum number of entries that may be recorded in the ICB�xe "ICB"� in which the entry is recorded.

The number of direct entries recorded in the ICB�xe "ICB"� hierarchy prior to recording the entry.

An ICB�xe "ICB"� entry�xe "ICB:entry"� shall not be recorded until all entries in that ICB with lower addresses have been recorded.

Note �SEQ Note *MERGEFORMAT�12�

Recording an indirect entry�xe "indirect entry"� does not imply that the ICB�xe "ICB"� specified by that indirect entry is necessarily completely recorded.

The ICB�xe "ICB"� may specify the strategy for building an ICB hierarchy (see � ref part_File �4�/� ref FStrategy_Type \n �14.6.2�). Annex � ref part_File �4�/� REF FileStructure_AnnexA * MERGEFORMAT �A� specifies certain strategies; other strategies may be subject to agreement between the originator and recipient of the medium (see annex � ref part_File �4�/� REF FileStructure_AnnexA * MERGEFORMAT �A�).

Note �SEQ Note *MERGEFORMAT�13�

Part � ref part_File �4� requires a data structure that describes sequences of bytes recorded in a volume. This can be used to record a user's file, the contents of a directory�xe "directory"� or various system data. Some media, such as write-once optical disks, cannot rerecord a sector�xe "sector"� once it has been written, and thus Part � ref part_File �4� requires a data structure that can describe successive versions of regions of bytes recorded in a volume. Note that this structure is efficient on rewritable media�xe "rewritable media"� by simply making the ICB�xe "ICB"� a single direct entry�xe "direct entry"�. Alternatively, the same structures allow rewritable media to support a history of all versions of a file.

Whereas there is a single algorithm for traversing an ICB�xe "ICB"� hierarchy, there are many algorithms or strategies for building these hierarchies.

ICB hierarchy

An ICB�xe "ICB"� hierarchy shall be a set of ICBs descended from a root ICB�xe "ICB:root"�. The root ICB shall be the only ICB at level 0 of an ICB hierarchy. An ICB identifying another ICB by an indirect entry�xe "indirect entry"� shall be called a parent ICB of the identified ICB. The parent ICB shall be at level m of the ICB hierarchy and the identified ICB shall be at level m+1 of the ICB hierarchy.

Different ICBs may have the same parent ICB.

Additional File Data

Extended attributes

An extended attribute shall specify an attribute type, an attribute subtype, and may specify attribute specific information. Extended attributes are associated with a file. All the extended attributes associated with a file shall be recorded in one or more extended attribute�xe "extended attribute"�s spaces associated with that file. The term “instances of an extended attribute” shall refer to all extended attributes recorded in the extended attributes space of the file with identical contents of their Attribute Type�xe "attribute type"� and Attribute Subtype�xe "attribute subtype"� fields (see � ref part_File �4�/� ref FExtended_Attribute_Generic_Format \n �14.10.2�).

An attribute type shall be an integer x where 0 (x <232.

An attribute subtype shall be an integer x where 0 (x < 28.

The attribute types are divided into three classes as follows:

Attribute types 1, 3, 5, 6, 12, 2 048, and 65 536 are registered according to ISO/IEC 13800 and are recorded as specified in � ref part_File �4�/� ref FExtended_Attributes_Specific \n �14.10�. Attribute types 2, 4, 7, 8, 9, 10 and 11 are registered according to ISO/IEC 13800 and shall not be recorded in the extended attributes space of a file. Attribute types 13 to 2 047 inclusive are reserved for reserved for registration according to ISO/IEC 13800. Attribute type 0 is reserved for future standardisation by ISO/IEC 13800.

Attribute types 2 049 to 65 535 inclusive shall be registered according to ISO/IEC 13800, are recorded according to � ref part_File �4�/� ref FExtended_Attribute_Generic_Format \n �14.10.2� and are reserved for implementation use according to ISO/IEC 13800.

Attribute types 65 537 and above shall be registered according to ISO/IEC 13800, are recorded according to � ref part_File �4�/� ref FExtended_Attribute_Generic_Format \n �14.10.2� and are reserved for application use according to ISO/IEC 13800.

There shall be

zero or one instance of each attribute with type 1, 3, 5, 6 or 12.

zero instances of each attribute with type 0, 2, 4, 7, 8, 9, 10 and 11.

zero or more instances of each attribute with type 2 048 or 65 536.

zero or more instances of each attribute with type 13 to 2047 inclusive, 2 049 to 65 535 inclusive or greater than 65 536 as specified by the registration according to ISO/IEC 13800.

The interpretation of attribute specific fields for each attribute with type

2 048: is specified by the regid (� ref part_General �1�/� ref Gregid \n �7.4�) recorded in the Implementation Identifier field of the attribute.

65 536: is specified by the regid (� ref part_General �1�/� ref Gregid \n �7.4�) recorded in the Application Identifier field of the attribute.

13 to 2 047 inclusive or 2 049 through 65 535 inclusive or greater than 65 536: is specified by the registration according to ISO/IEC 13800 of the attribute type and subtype.

If allowed by the registration of the attribute type, multiple instances of an extended attribute need not be identical; they may have different attribute specific information.

An extended attribute�xe "extended attribute"�s space of a file is one of the following:

The Extended Attribute�xe "extended attribute"�s field of the file's File Entry�xe "File Entry"�.

A file described by an ICB�xe "ICB"� identified in the file's File Entry�xe "File Entry"�.

In each case, an extended attribute�xe "extended attribute"�s space shall be recorded according to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FExtended_attributes_space_schema * MERGEFORMAT �6�.

<Extended Attribute�xe "extended attribute"� Header Descriptor�xe "Extended Attribute Header Descriptor"��xe "Attribute Header Descriptor"�>

<Extended Attribute�xe "extended attribute"�> 0+

Figure � SEQ SEQ_FIGURE_FileStructure �6� - Extended attributes space schema�xe "schema"�

Extended attributes shall be recorded contiguously in three non-overlapping areas within an extended attribute�xe "extended attribute"�s space as follows:

The first area, starting with the first byte after the Extended Attribute�xe "extended attribute"� Header Descriptor�xe "Extended Attribute Header Descriptor"��xe "Attribute Header Descriptor"�, is reserved for the recording of attributes defined in clauses � ref part_File �4�/� ref FExtended_Attribute_Specific_First \n �14.10.3� to � ref part_File �4�/� ref FExtended_Attribute_Specific_Last \n �14.10.7�.

The second area, starting at a byte of the extended attribute�xe "extended attribute"�s space specified in the Extended Attribute Header descriptor, is reserved for the recording of attribute type�xe "attribute type"�s 2 048 to 65 535 (see � ref part_File �4�/� ref FExtended_Attribute_Implementation_Use \n �14.10.8�).

The third area, starting at a byte of the extended attribute�xe "extended attribute"�s space specified in the Extended Attribute Header descriptor, is reserved for the recording of attribute types 65 536 and above (see � ref part_File �4�/� ref FExtended_Attribute_Application_Use \n �14.10.9�).

The following extended attribute�xe "extended attribute"�s are defined in � ref part_File �4�/� ref FExtended_Attributes_Specific \n �14.10�:

Character Set�xe "character set"� Information

File Times

File Creation Date and Time, File Deletion Date and Time, File Effective Date and Time, File Last Backup Date and Time

Information Times

Information Creation Date and Time, Information Last Modification Date and Time, Information Expiration Date and Time, Information Effective Date and Time

Alternate Permissions�xe "Extended Attribute:Alternate Permissions"�

Device�xe "device"� Specification

Application�xe "application"� Use�xe "application:use"�

Implementation Use�xe "implementation use"�

Note �SEQ Note *MERGEFORMAT�14�

There need not be any extended attribute�xe "extended attribute"�s associated with a file. The multiple occurrences of attributes of types 2 048 and 65 536, if any, are intended to be distinguished by the contents of their Implementation Identifier and Application�xe "application"� Identifier�xe "application:identifier"� fields respectively. Such occurrences might have differing contents in some attribute specific fields, such as the Implementation Use�xe "implementation use"� or Application Use�xe "application:use"� fields.

Stream Directory

A stream directory identifies all data streams of a file. The ICB describing a stream directory shall be identified by a Stream Directory ICB entry in an Extended File Entry (see � ref part_File �4�/� ref FStream_Directory_ICB \n �14.17.19�). A stream directory shall contain a set of File Identifier Descriptors (see � ref part_File �4�/� ref FFile_Identifier_Descriptor \n �14.4�), each of which identifies a stream of the file.

For the descriptors in a directory:

There shall not be more than one descriptor with the same File Identifier and File Version Number.

There shall be exactly one File Identifier Descriptor identifying the parent (main data stream) (see � ref part_File �4�/� ref FFile_characteristics_section \n �14.4.3�)

The descriptors shall be ordered according to � ref part_File �4�/� ref FDirectory_Order \n �8.6.1�

A stream directory shall be recorded according to the schema in figure � ref part_File �4�/� ref FDirectory_Schema �5�

Partition space management

A partition has two types of space managed by Part � ref part_File �4�; space ready for allocation (unallocated space�xe "unallocated space"�), and space that may require preparation before allocation (freed space�xe "freed space"�). In both cases, partition space�xe "partition:space"� is specified by a space set which specifies a collection of logical block�xe "logical block"�s in the partition. A space set shall be recorded as either a Space Table�xe "space:table"� or as a Space Bitmap�xe "space:bitmap"� as specified in � ref part_File �4�/� ref FSpace_Sets \n �10.1�.

The Unallocated Space�xe "unallocated Space"� Set�xe "space:set"� of a partition is a space set. If a logical block�xe "logical block"� is in the Unallocated Space Set, it may be allocated for recording.

The Freed Space�xe "freed space"� Set�xe "space:set"� of a partition is a space set. If a logical block�xe "logical block"� is in the Freed Space Set, it may be allocated for recording but may require preparation before recording as specified by the standard for recording.

The Unallocated and Freed Space�xe "freed space"� Set�xe "space:set"�s shall be identified by the Partition Header Descriptor�xe "Partition Header Descriptor"� (� ref part_File �4�/� ref FPartition_Header_Descriptor \n �14.3�).

Space sets

�xe "space:set"�A space set shall be recorded as either a Space Table�xe "space:table"� or as a Space Bitmap�xe "space:bitmap"�.

A Space Table�xe "space:table"� shall be recorded as an ICB�xe "ICB"� hierarchy consisting of indirect entries�xe "indirect entry"� and unallocated space�xe "unallocated space"� entries�xe "space:entry"� (see � ref part_File �4�/� ref FUnallocated_Space_Entry \n �14.11�). The logical block�xe "logical block"�s in the space set are all the logical blocks which belong to the extents specified by the last Space Entry in the Space Table.

A Space Bitmap shall be recorded as a Space Bitmap Descriptor which includes a sequence of n bits recorded in a single extent, where n is the number of logical blocks in the partition. The value of bit s is recorded at bit rem(s,8) of byte ip(s/8), where byte 0 is the first byte of the extent. The space set consists of all logical blocks s such that bit s is ONE.

Note �SEQ Note *MERGEFORMAT�15�

It is preferable that the Standard support just one type of space set. However, it is anticipated that the unallocated partition space will be updated fairly often, and that the unallocated partition space will get fragmented. Bitmaps handle the latter case efficiently but are too expensive for the former case on write-once media. In this case, we need the equivalent of an ICB�xe "ICB"� which essentially records many instances of an arbitrary sequence of bytes. In fact, a Space Table�xe "space:table"� is simply an ICB with direct entries specialised for recording extents of space. It is expected, but not required, that rewritable media�xe "rewritable media"� will use space bitmap�xe "space:bitmap"�s and write-once media will use space tables.

Rewritable media may also require a second space set for logical block�xe "logical block"�s which may need to be preconditioned before recording. Some rewritable magneto-optic technology requires sectors be cleared before recording and the freed space�xe "freed space"� list allows this clearing to be done asynchronously with the freeing of that space. Clearing large numbers of sectors at one time may also allow use of special hardware features such as clearing a track in one operation. For rewritable media�xe "rewritable media"� that requires no special preprocessing for rewriting sectors, it is likely that the freed space map�xe "space:map"� will be empty.

Partition integrity

Partition integrity specifies the status of the information recorded on the medium and shall be recorded as a Partition Integrity Table specified by the Partition Header Descriptor�xe "Partition Header Descriptor"� (see � ref part_File �4�/� ref FPartition_Header_Descriptor \n �14.3�). This is an ICB�xe "ICB"� consisting of Indirect Entries�xe "indirect entry"� and Partition Integrity Entries�xe "integrity:partition"� (see � ref part_File �4�/� ref FPartition_Integrity_Entry \n �14.13�) as follows:

An Open Integrity�xe "integrity:open"� Entry shall be recorded before any data is recorded in the partition since the last Close Integrity�xe "integrity:close"� Entry, if any, was recorded.

A Close Integrity�xe "integrity:close"� Entry may be recorded only after all user data has been completely recorded and the descriptors recorded on the partition conform to Part � ref part_File �4�.

A Stable Integrity Entry�xe "integrity:stable"� may be recorded after all descriptors recorded on the partition conform to Part � ref part_File �4�. However, the data in files with a 0, 5, 6, 7 or 9 in the File Type�xe "file type"� field (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�) of the File Entry�xe "File Entry"� describing the file need not have been recorded.

Note �SEQ Note *MERGEFORMAT�16�

The partition integrity entries�xe "integrity:partition"��xe "integrity:entry"� provide a standard, portable and convenient way for implementations to indicate that a modified partition has had both its data and control structures properly updated. Because of optical media's large size and relatively slow access, it is particularly important to avoid unnecessary consistency checks over a partition or volume.

As an example, consider a partition mounted as a file system�xe "file system"� on a computer. When the first write request for that partition is issued, an Open Integrity�xe "integrity:open"� Entry is recorded prior to performing the write request. When the partition is unmounted, a Close Integrity�xe "integrity:close"� Entry is recorded after any queued write requests have been performed. Periodically, Stable Integrity Entries�xe "integrity:stable"� may be recorded after bringing up to date the data structures specified in Part � ref part_File �4�. Finally, systems, such as file servers, that keep file systems mounted for long periods of time and wish to minimise the risk of a system failure and the use of lengthy recovery procedures, might adopt heuristics such as recording a Close Integrity Entry periodically or after some delay after the last write request.

Allocation descriptors

Allocation descriptors (see � ref part_File �4�/� ref FAllocation_Descriptors \n �14.14�) specify the location, length, and type of an extent. The extent’s type is one of

recorded data,

allocated and unrecorded space,

space neither allocated nor recorded.

The contents of an unallocated or unrecorded extent shall be interpreted as all #00 bytes. Allocation refers to the reservation of one or more extents for current or future use, guaranteeing its availability for recording and making it unavailable for any other purpose.

A sequence of allocation descriptors shall be recorded contiguously within a field or an extent�xe "extent"�.

A field or an extent�xe "extent"� of a sequence of allocation descriptors shall be terminated by one of

the end of the field,

an allocation descriptor whose Extent Length field is 0,

an allocation descriptor identifying a continuation extent�xe "extent"� in which the recording of the sequence of allocation descriptors is continued. The continuation extent shall be recorded according to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FContinuation_extent_schema * MERGEFORMAT �7�.

[Extent of Allocation Descriptor�xe "Allocation Descriptor"�s]{

	<Allocation Extent Descriptor�xe "Allocation Extent Descriptor"��xe "Extent Descriptor"�>

	<allocation descriptor> 1+

}

Figure � SEQ SEQ_FIGURE_FileStructure �7� - Continuation extent�xe "extent"� schema�xe "schema"�

Allocation descriptors have an associated Information Length, which is the amount of information, in bytes, in the extent�xe "extent"�. The Extended Allocation Descriptor�xe "Allocation Descriptor:Extended"��xe "Allocation Descriptor"�, or ext_ad (� ref part_File �4�/� ref Fext_ad \n �14.14.3�), specifies the Information Length as a field; for all other allocation descriptors, the Information Length shall be the same as the length of the extent.

Description of Files

The sequence of the allocation descriptors describing the extents of a file shall be recorded as a File Body followed by a File Tail according to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FFile_extents_schema * MERGEFORMAT �8�.

[File Body]{

	<allocation descriptor>(extent�xe "extent"� length is a multiple of LBS) 0+

	<allocation descriptor> 0+1

}

[File Tail]{

	<allocation descriptor>(unrecorded and allocated) 0+

}

Figure � SEQ SEQ_FIGURE_FileStructure �8� - File extents schema�xe "schema"�

LBS denotes the logical block�xe "logical block"� size�xe "logical block:size"�. The type of allocation descriptor shall be specified by the Flags�xe "flags"� field in the ICB�xe "ICB"� Tag�xe "ICB:Tag"� field (see � ref part_File �4�/� ref FICB_Flags \n �14.6.8�).

Note �SEQ Note *MERGEFORMAT�17�

A sparse file�xe "sparse file"�, such as a large file with data recorded only at the beginning and the end of the file, might be recorded as two allocated and recorded extents separated by an unallocated and unrecorded extent�xe "extent"�.

Recording of descriptors

All the descriptors in Part � ref part_File �4� whose format is specified with Byte Positions (BP) shall be recorded so that the first byte of the descriptor coincides with the first byte of a logical block�xe "logical block"�. All the descriptors in Part � ref part_File �4� whose format is specified with Byte Positions (BP), except for the Space Bitmap�xe "space:bitmap"� Descriptor�xe "Space Bitmap Descriptor"��xe "Bitmap Descriptor"�, shall have a length no larger than the size of a logical block.

The descriptors in Part � ref part_File �4� whose format is specified with Relative Byte Positions (RBP) have no restrictions�xe "restrictions"� on where they may be recorded within a logical block�xe "logical block"�, except that their location within a descriptor shall be specified in the description of the applicable descriptor.

When the descriptors described in Part � ref part_File �4� are recorded in a logical block, all space, if any, after the end of the last descriptor up to the end of the logical block is reserved for future standardisation and shall be recorded as all #00 bytes.

File Data Structures

File Set Descriptor

The File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� shall identify a set of files and directories�xe "directory"� and shall be recorded in the format shown in figure � ref part_File �4�/� REF FFile_Set_Descriptor_format * MERGEFORMAT �9�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=256)��16�12�Recording Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��28�2�Interchange Level�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��30�2�Maximum Interchange Level�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��32�4�Character Set�xe "character set"� List�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��36�4�Maximum Character Set�xe "character set"� List�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��40�4�File Set�xe "file set"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��44�4�File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Number�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��48�64�Logical Volume Identifier Character Set�xe "character set"� �charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�)��112�128�Logical Volume Identifier�dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��240�64�File Set�xe "file set"� Character Set�xe "character set"� �charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�)��304�32�File Set�xe "file set"� Identifier�dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��336�32�Copyright File Identifier�xe "copyright"� �dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��368�32�Abstract File Identifier�xe "abstract"� �dstring (� ref part_General �1�/� ref Gdstring \n �7.2.12�)��400�16�Root Directory�xe "directory"� ICB�xe "ICB"� �long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��416�32�Domain Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��448�16�Next Extent�long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��464�16�System Stream Directory ICB�long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��480�32�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_FileStructure �9� - File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 256.

Recording Date and Time (BP 16) removefromTOC

This field shall specify the date and time of the day at which this descriptor was recorded.

Interchange Level (BP 28) removefromTOC

This field shall specify the current level of medium interchange�xe "interchange"� (� ref part_File �4�/� ref FLevels_of_Medium_Interchange \n �15�) of the file set�xe "file set"� described by this descriptor.

Maximum Interchange Level (BP 30) removefromTOC

This field shall specify the maximum value that may be specified for the Interchange Level field of this descriptor.

Character Set List (BP 32) removefromTOC

This field shall identify the character set�xe "character set"�s specified by any field, whose contents are specified to be a charspec�xe "charspec"� (� ref part_General �1�/� ref Gcharspec \n �7.2.1�), of any descriptor specified in Part � ref part_File �4� and recorded in the file set described by this descriptor.

Maximum Character Set List (BP 36) removefromTOC

The Character Set List field in this descriptor shall not specify a character set (see � ref part_General �1�/� ref Gcharset \n �7.2.11�) not specified by the Maximum Character Set List field.

Note �SEQ Note *MERGEFORMAT�18�

The Interchange Level, Maximum Interchange Level, Character Set�xe "character set"� List and Maximum Character Set List fields permit an implementation to:

determine whether it can process all of the information in the file set�xe "file set"�

restrict the recording of information in the file set�xe "file set"� so that the file set does not exceed the level given in the Maximum Interchange Level field

restrict the recording of information in the file set�xe "file set"� so that all character set�xe "character set"�s recorded belong to the Maximum Character Set List field.

This allows a user to create a file set�xe "file set"� that can be processed when it is returned to the user.

File Set Number (BP 40) removefromTOC

This field shall specify the assigned file set�xe "file set"� number for this descriptor.

File Set Descriptor Number (BP 44) removefromTOC

�xe "File Set Descriptor"�This field shall specify the assigned file set�xe "file set"� descriptor number for this descriptor.

Logical Volume Identifier Character Set (BP 48) removefromTOC

�xe "character set"�This field shall specify the d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�) allowed in the Logical Volume Identifier field.

If the volume is recorded according to Part � ref part_Volume �3�, the contents of this field shall be identical to the contents of the Descriptor Character Set field of the Logical Volume Descriptor�xe "Logical Volume Descriptor"� describing the logical volume�xe "logical volume"� on which the file set�xe "file set"� described by this File Set Descriptor�xe "File Set Descriptor"� is recorded.

Logical Volume Identifier (BP 112) removefromTOC

This field shall specify an identification of the logical volume�xe "logical volume"� on which the file set�xe "file set"� is recorded.

If the volume is recorded according to Part � ref part_Volume �3�, the contents of this field shall be identical to the contents of the Logical Volume Identifier field of the Logical Volume Descriptor�xe "Logical Volume Descriptor"� describing the logical volume�xe "logical volume"� on which the file set�xe "file set"� described by this File Set Descriptor�xe "File Set Descriptor"� is recorded.

File Set Character Set (BP 240) removefromTOC

�xe "file set"��xe "character set"�This field shall specify the d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�) allowed in certain fields of descriptors specified by Part � ref part_File �4� which have been specified as containing d-characters.

Note �SEQ Note *MERGEFORMAT�19�

Part � ref part_File �4� does not specify the relationship between the contents of the File Set�xe "file set"� Character Set�xe "character set"� field and the Logical Volume Identifier Character Set fields or the relationship of those fields to any other fields specified by Part � ref part_File �4� or by another standard.

File Set Identifier (BP 304) removefromTOC

This field shall specify an identification of the file set�xe "file set"� described by this File Set Descriptor.

Copyright File Identifier (BP 336) removefromTOC

This field shall identify a file in the root directory containing a copyright statement for the information recorded in the file set identified by this File Set Descriptor. If the field contains all #00 bytes, then no such file is identified.

Abstract File Identifier (BP 368) removefromTOC

This field shall identify a file in the root directory containing an abstract for the information recorded in the file set identified by this File Set Descriptor. If the field contains all #00 bytes, then no such file is identified.

Root Directory ICB (BP 400) removefromTOC

This field shall specify the location of an ICB�xe "ICB"� describing the root directory�xe "directory:root"��xe "directory"� of the directory hierarchy�xe "directory:hierarchy"� associated with the file set�xe "file set"� identified by this File Set Descriptor�xe "File Set Descriptor"�. If the extent�xe "extent"�'s length is 0, no such ICB is specified.

Domain Identifier (BP 416) removefromTOC

This field shall specify an identification of a domain which shall specify rules on the use of, and restrictions�xe "restrictions"� on, certain fields in descriptors subject to agreement between the originator and recipient of the medium. If this field contains all #00 bytes, then no such domain is identified. The scope�xe "scope"� of this regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) shall include all information recorded in the file set�xe "file set"� described by this descriptor.

Next Extent (BP 448) removefromTOC

This field shall specify the next extent�xe "extent"� where File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�s may be recorded. If the extent's length is 0, no such extent is specified.

System Stream Directory ICB (BP 464) removefromTOC

This field shall specify the location of an ICB describing the System Stream Directory associated with the file set identified by this File Set Descriptor. If the extent’s length is 0, no such ICB is specified.

Reserved (BP 464) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Terminating Descriptor

A Terminating Descriptor�xe "Terminating Descriptor"� may be recorded to terminate an extent�xe "extent"� of a File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� Sequence�xe "File Set Descriptor Sequence"� (see � ref part_File �4�/� ref FFile_Set_Descriptor_Sequence \n �8.3.1�). It shall be recorded in the format shown in figure � ref part_File �4�/� REF FTerminating_Descriptor_format * MERGEFORMAT �10�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) (Tag=8)��16�496�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_FileStructure �10� - Terminating Descriptor�xe "Terminating Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_Volume �3�/� ref Vtag \n �7.2�) for this descriptor shall contain 8.

Reserved (BP 16) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Partition Header Descriptor

The Partition Header Descriptor�xe "Partition Header Descriptor"� shall specify the Unallocated Space�xe "unallocated Space"� Set�xe "space:set"�, the Freed Space�xe "freed space"� Set, and the Partition Integrity Table. As specified in � ref part_File �4�/� ref FPart_Interface_Input \n �3.1�, it shall be recorded with the format shown in figure � ref part_File �4�/� REF FPartition_Header_Descriptor_format * MERGEFORMAT �11�.

RBP�Length�Name�Contents��0�8�Unallocated Space�xe "unallocated Space"� Table�xe "space:table"� �short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�)��8�8�Unallocated Space�xe "unallocated Space"� Bitmap�xe "unallocated space:bitmap"��xe "space:bitmap"� �short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�)��16�8�Partition Integrity Table�short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�)��24�8�Freed Space Table �short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�)��32�8�Freed Space Bitmap �short_ad (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�)��40�88�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_FileStructure �11� - Partition Header Descriptor format

Unallocated Space Table (RBP 0) removefromTOC

This field shall specify the Unallocated Space Table for this partition (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�). If the extent's length is 0, then no Unallocated Space Table is specified.

Unallocated Space Bitmap (RBP 8) removefromTOC

This field shall identify the extent�xe "extent"� in which the Unallocated Space�xe "unallocated Space"� Bitmap�xe "unallocated space:bitmap"��xe "space:bitmap"� for this partition (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�) is recorded. If the extent's length is 0, then no Unallocated Space Bitmap is specified.

Partition Integrity Table (RBP 16) removefromTOC

This field shall specify the Partition Integrity Table for this partition (see � ref part_File �4�/� ref FPartition_Integrity \n �11�). If the extent�xe "extent"�'s length is 0, then no Partition Integrity Table is specified.

Freed Space Table (RBP 24) removefromTOC

This field shall specify the Freed Space�xe "freed space"� Table�xe "space:table"� for this partition (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�). If the extent�xe "extent"�'s length is 0, then no Freed Space Table is specified.

Freed Space Bitmap (RBP 32) removefromTOC

This field shall identify the extent�xe "extent"� in which the Freed Space�xe "freed space"� Bitmap�xe "space:bitmap"� for this partition (see � ref part_File �4�/� ref FPartition_Space_Management \n �10�) is recorded. If the extent's length is 0, then no Freed Space Bitmap is specified.

Reserved (RBP 40) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

File Identifier Descriptor

A File Identifier Descriptor�xe "File Identifier Descriptor"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FFile_Identifier_Descriptor_format * MERGEFORMAT �12�.

RBP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=257)��16�2�File Version Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��18�1�File Characteristics�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��19�1�Length of File Identifier (=L_FI)�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��20�16�ICB�xe "ICB"� �long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��36�2�Length of Implementation Use�xe "implementation use"� (=L_IU)�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��38�L_IU�Implementation Use�xe "implementation use"� �bytes��[L_IU+38]�L_FI�File Identifier�d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�)��[L_FI+L_IU+38]�*�Padding�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �12� - File Identifier Descriptor�xe "File Identifier Descriptor"� format

Descriptor Tag (RBP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 257.

File Version Number (RBP 16) removefromTOC

This field shall specify the file version number of the file specified by the File Identifier field as a number in the range 1 to 32 767 inclusive. The numbers 32 768 to 65 535 inclusive are reserved for future standardisation.

File Characteristics (RBP 18) removefromTOC

This field shall specify certain characteristics of the file as shown in figure � ref part_File �4�/� REF FFile_characteristicsF* MERGEFORMAT �13�.

Bit�Interpretation��0�Existence: If set to ZERO, shall mean that the existence of the file shall be made known to the user; If set to ONE, shall mean that the existence of the file need not be made known to the user.��1�Directory�xe "directory"�: If set to ZERO, shall mean that the file is not a directory (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�); If set to ONE, shall mean that the file is a directory.

Note �SEQ Note *MERGEFORMAT�20� - If the file is a symbolic link (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�), the Directory bit is set to 0.��2�Deleted: If set to ONE, shall mean this File Identifier Descriptor�xe "File Identifier Descriptor"� identifies a file that has been deleted; If set to ZERO, shall mean that this File Identifier Descriptor identifies a file that has not been deleted.

Note �SEQ Note *MERGEFORMAT�21� - The Deleted bit allows a file to be deleted from a directory�xe "directory"� by only rewriting the logical block�xe "logical block"� (s) containing the File Identifier Descriptor�xe "File Identifier Descriptor"�. Note that even if the Deleted bit is set to ONE, all the descriptor's fields still need to be valid.��3�Parent: If set to ONE, shall mean that the ICB�xe "ICB"� field of this descriptor identifies the ICB associated with the file in which is recorded the parent directory�xe "parent:directory"��xe "directory"� of the directory that this descriptor is recorded in; If set to ZERO, shall mean that the ICB field identifies the ICB associated with the file specified by this descriptor��4�Metadata: If this File Identifier Descriptor is not in a stream directory, this bit shall be set to ZERO. If this File Identifier Descriptor is in a stream directory, a value of ZERO shall indicate that this stream contains user data. A value of ONE shall indicate that the stream contains implementation use data. ��5-7�Shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_FileStructure �13� - File characteristics

If the Parent bit is set to ONE, then the Directory�xe "directory"� bit shall be set to ONE.

Length of File Identifier (=L_FI) (RBP 19) removefromTOC

This field shall specify the length, in bytes, of the File Identifier field. If the Parent bit of the File Characteristics field is set to ONE, the length of the File Identifier field shall be 0.

ICB (RBP 20) removefromTOC

This field shall specify the address of an ICB�xe "ICB"� describing the file. If the Delete bit of the File Characteristics field of the File Identifier Descriptor�xe "File Identifier Descriptor"� is set to ONE, the ICB field may contain all #00 bytes, in which case no ICB is specified.

Length of Implementation Use (=L_IU) (RBP 36) removefromTOC

This field shall specify the length, in bytes, of the Implementation Use�xe "implementation use"� field. L_IU shall be an integral multiple of 4.

Implementation Use (RBP 38) removefromTOC

�xe "implementation use"�If L_IU is greater than 0, this field shall specify an identification of an implementation, recorded as a regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) in the first 32 bytes of this field, which can recognise and act upon the remainder of this field, which shall be reserved for implementation use and its contents are not specified by this ECMA Standard. The scope�xe "scope"� of this regid includes the contents of this descriptor.

Note �SEQ Note *MERGEFORMAT�22�

The scope�xe "scope"� of the regid�xe "regid"� does not include the file; thus file-specific information recorded in this field may become out of date when the file is modified, particularly if multiple File Identifier Descriptors refer to the file.

File Identifier (RBP [L_IU+38]) removefromTOC

This field shall specify an identification for the file described by the ICB identified in the ICB field.

Padding (RBP [L_FI+L_IU+38]) removefromTOC

This field shall be 4 (ip((L_FI+L_IU+38+3)/4) ((L_FI+L_IU+38) bytes long and shall contain all #00 bytes.

Allocation Extent Descriptor

The Allocation Extent Descriptor�xe "Allocation Extent Descriptor"��xe "Extent Descriptor"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FAllocation_Extent_Descriptor_format * MERGEFORMAT �14�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=258)��16�4�Previous Allocation Extent Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Length of Allocation Descriptor�xe "Allocation Descriptor"�s (=L_AD)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_FileStructure �14� - Allocation Extent Descriptor�xe "Allocation Extent Descriptor"��xe "Extent Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 258.

Previous Allocation Extent Location (BP 16) removefromTOC

This field shall specify the address, within the partition the descriptor is recorded on, of the previous allocation extent�xe "extent"�. If the extent's length is 0, the previous allocation extent is not specified.

Length of Allocation Descriptors (=L_AD) (BP 20) removefromTOC

�xe "Allocation Descriptor"�This field specifies the length, in bytes, of the allocation descriptors recorded after this descriptor.

ICB Tag

�xe "ICB"��xe "ICB:Tag"�All the entries in an ICB shall have a common format; a tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�), followed by an icbtag as shown in figure � ref part_File �4�/� REF Ficbtag_format * MERGEFORMAT �15�, followed by a part that is unique�xe "unique"� to each type of entry and is described in the definition of that entry.

RBP�Length�Name�Contents��0�4�Prior Recorded Number of Direct Entries�xe "direct entry"� �Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�2�Strategy Type�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��6�2�Strategy Parameter�bytes��8�2�Maximum Number of Entries�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��10�1�Reserved�#00 byte��11�1�File Type�xe "file type"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��12�6�Parent ICB�xe "parent:ICB"��xe "ICB"� Location�lb_addr (� ref part_File �4�/� ref Flb_addr \n �7.1�)��18�2�Flags�xe "flags"��Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��Figure � SEQ SEQ_FIGURE_FileStructure �15� - icbtag format

Prior Recorded Number of Direct Entries (RBP 0) removefromTOC

�xe "direct entry"�This field specifies the number of Direct Entries recorded in this ICB hierarchy prior to this entry.

Strategy Type (RBP 4) removefromTOC

This field shall specify the strategy for building the ICB hierarchy of which the ICB is a member. The strategies are specified by a number as shown in figure � ref part_File �4�/� REF FICB_strategies * MERGEFORMAT �16�.

Type�Interpretation��0�The strategy is not specified by this clause.��1�The strategy is specified in 4/� REF strategy1 * MERGEFORMAT �A.2�.��2�The strategy is specified in 4/� REF strategy2 * MERGEFORMAT �A.3�.��3�The strategy is specified in 4/� REF strategy3 * MERGEFORMAT �A.4�.��4�The strategy is specified in 4/� REF strategy4 * MERGEFORMAT �A.5�.��5-4 095�Reserved for future standardisation.��4 096-65 535�The interpretation of the strategy shall be subject to agreement between the originator and recipient of the medium.��Figure � SEQ SEQ_FIGURE_FileStructure �16� - ICB�xe "ICB"� strategies

Strategy Parameter (RBP 6) removefromTOC

This field shall be interpreted according to the strategy specified by the Strategy Type field.

Maximum Number of Entries (RBP 8) removefromTOC

This field specifies the maximum number of entries, including both direct and indirect, that may be recorded in this ICB�xe "ICB"�. This field shall be greater than 0.

Reserved (RBP 10) removefromTOC

This field shall be reserved for future standardisation and shall be set to 0.

File Type (RBP 11) removefromTOC

�xe "file type"�This field shall specify the type of the file as shown in figure � ref part_File �4�/� REF FFile_Types * MERGEFORMAT �17�.

Type�Interpretation��0�Shall mean that the interpretation of the file is not specified by this field��1�Shall mean that this is an Unallocated Space�xe "unallocated Space"� Entry�xe "unallocated space:entry"��xe "space:entry"� (see � ref part_File �4�/� ref FUnallocated_Space_Entry \n �14.11�)��2�Shall mean that this is a Partition Integrity Entry�xe "integrity:partition"� (see � ref part_File �4�/� ref FPartition_Integrity_Entry \n �14.13�)��3�Shall mean that this is an Indirect Entry�xe "indirect entry"� (see � ref part_File �4�/� ref FIndirect_Entry \n �14.7�)��4�Shall mean that the file is a directory�xe "directory"� (see � ref part_File �4�/� ref FDirectories \n �8.6�)��5�Shall mean that the file shall be interpreted as a sequence of bytes, each of which may be randomly accessed��6�Shall mean that the file is a block special device�xe "block special device"��xe "device"� file as specified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1��7�Shall mean that the file is a character special device�xe "character special device"��xe "device"� file as specified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1��8�Shall mean that the file is for recording Extended Attribute�xe "extended attribute"�s as described in � ref part_File �4�/� ref FExtended_Attributes \n �9.1���9�Shall mean that the file is a FIFO�xe "FIFO"� file as specified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1��10�Shall mean that the file shall be interpreted according to the C_ISSOCK file type�xe "file type"� identified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1��11�Shall mean that this is a Terminal Entry�xe "Terminal Entry"� (see � ref part_File �4�/� ref FTerminating_Entry \n �14.8�)��12�Shall mean that the file is a symbolic link�xe "symbolic link"� and that its content is a pathname (see � ref part_File �4�/� ref FPathname_Description \n �8.7�) for a file or directory��13�Shall mean that the file is a Stream Directory (see � ref part_File �4�/� ref FStream_Directory \n �9.2�)��14-247�Reserved for future standardisation��248-255�Shall be subject to agreement between the originator and recipient of the medium��Figure � SEQ SEQ_FIGURE_FileStructure �17� - File Types

The interpretation of the content of files of File Types 0 and 5 shall be subject to agreement between the originator and recipient of the medium.

Parent ICB Location (RBP 12) removefromTOC

�xe "parent:ICB"��xe "ICB"�If the strategy type is not 4, this field shall specify the location of the ICB which contains an indirect entry�xe "indirect entry"� specifying the ICB that this descriptor is recorded in. If the strategy type is 4, this field shall indicate the previously recorded ICB identifying this file. If this field contains 0, no such ICB is specified.

Note � seq Note �23�

Any ICB recorded at logical block 0 in partition reference number 0 cannot be identified by this field.

Flags (RBP 18) removefromTOC

�xe "flags"�This field shall specify recording information about the file as shown in figure � ref part_File �4�/� REF FFile_characteristics * MERGEFORMAT �18�.

Bit�Interpretation��0-2�Shall be interpreted as a 3-bit unsigned binary number as follows. The value 0 shall mean that Short Allocation Descriptor�xe "Allocation Descriptor:Short"��xe "Allocation Descriptor"�s (� ref part_File �4�/� ref Fshort_ad \n �14.14.1�) are used. The value 1 shall mean that Long Allocation Descriptor�xe "Allocation Descriptor:Long"�s (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) are used. The value 2 shall mean that Extended Allocation Descriptor�xe "Allocation Descriptor:Extended"�s (� ref part_File �4�/� ref Fext_ad \n �14.14.3�) are used. The value 3 shall mean that the file shall be treated as though it had exactly one allocation descriptor describing an extent�xe "extent"� which starts with the first byte of the Allocation Descriptors field and has a length, in bytes, recorded in the Length of Allocation Descriptors field. The values of 4-7 are reserved for future standardisation.��3�If the file is not a directory�xe "directory"�, this bit shall be reserved for future standardisation and set to ZERO. If the file is a directory and this bit is set to ONE, the directory shall be sorted�xe "sorting"� according to � ref part_File �4�/� ref FDirectory_Order \n �8.6.1�. If the file is a directory and this bit is set to ZERO, the directory need not be sorted according to � ref part_File �4�/� ref FDirectory_Order \n �8.6.1�.��4�Non-relocatable: If set to ZERO, shall mean that there are no restrictions�xe "restrictions"� on how the allocation descriptors specifying the file's data may be modified; If set to ONE, the allocation descriptors shall not be modified such that either the address of an extent�xe "extent"� of the file is changed or that the recorded length of an extent is reduced.��5�Archive�xe "archive"�: This bit shall be set to ONE when the file is created or is written. This bit shall be set to ZERO in an implementation-dependent manner.��6�Setuid: This bit shall be interpreted as the S_ISUID bit as specified in ISO/IEC 9945�xe "ISO/IEC 9945"�-1.��7�Setgid: This bit shall be interpreted as the S_ISGID bit as specified in ISO/IEC 9945�xe "ISO/IEC 9945"�-1.��8�Sticky: This bit shall be interpreted as the C_ISVTX bit as specified in ISO/IEC 9945�xe "ISO/IEC 9945"�-1.��9�Contiguous: If set to ZERO, then an extent�xe "extent"� of a file need not begin at the first logical block�xe "logical block"� after the last logical block of the preceding extent of the file; If set to ONE, then each extent of a file shall begin at the first logical block after the last logical block of the preceding extent of the file.��10�System: This bit shall be reserved for implementation use�xe "implementation use"�.��11�Transformed: If set to ZERO, shall mean that the recorded bytes of the data space�xe "data space"� of the file are those supplied by the user. If set to ONE, shall mean that the bytes supplied by the user have been transformed in a manner not specified by this ECMA Standard prior to recording.��12�Multi-versions: If the file is not a directory�xe "directory"�, this bit shall be reserved for future standardisation and shall be set to ZERO. If the file is a directory and the bit is set to ZERO, then no two File Identifier Descriptor�xe "File Identifier Descriptor"�s recorded in the directory shall have the same contents of their File Identifier fields. If the file is a directory and the bit is set to ONE, then there may be two or more File Identifier Descriptors recorded in the directory with identical contents of their File Identifier fields.��13�Stream: If this bit is set to ZERO, the file is not a stream. If this bit is set to ONE, the file is a stream identified by one or more File Identifier Descriptors in a stream directory (see � ref part_File �4�/� ref FStream_Directory \n �9.2�)

Note � seq Note �24�

If a File Entry or Extended File Entry is identified by both a File Identifier Descriptor in a directory and a File Identifier Descriptor in a stream directory, this bit is set to one.��14-15�Shall be reserved for future standardisation and all bits shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_FileStructure �18� - File characteristics

Indirect Entry

An Indirect Entry shall be recorded in the format shown in figure � ref part_File �4�/� REF FIndirect_Entry_format * MERGEFORMAT �19�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) (Tag=259)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) (Type=3)��36�16�Indirect ICB�xe "ICB"� �long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��Figure � SEQ SEQ_FIGURE_FileStructure �19� - Indirect Entry�xe "indirect entry"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 259.

ICB Tag (BP 16) removefromTOC

�xe "ICB:Tag"�The File Type�xe "file type"� field of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) for this descriptor shall contain 3.

Indirect ICB (BP 36) removefromTOC

�xe "ICB"�This field shall specify the address of another ICB.

Terminal Entry

A Terminal Entry�xe "Terminal Entry"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FTerminal_Entry_format * MERGEFORMAT �20�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) (Tag=260)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) (Type=11)��Figure � SEQ SEQ_FIGURE_FileStructure �20� - Terminal Entry�xe "Terminal Entry"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 260.

ICB Tag (BP 16) removefromTOC

�xe "ICB:Tag"�The File Type�xe "file type"� field of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) for this descriptor shall contain 11.

File Entry

�xe "File Entry"�The File Entry is a direct entry recorded in an ICB in the format shown in figure � ref part_File �4�/� REF FFile_Entry_format * MERGEFORMAT �21� for File Types 0 and 4-10 as specified in � ref part_File �4�/� ref FFile_Type \n �14.6.6�.

Note � seq Note �25�

A superset of this functionality is provided by the Extended File Entry (see � ref part_File �4�/� ref FExtended_File_Entry \n �14.17�)

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=261)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�)��36�4�Uid�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��40�4�Gid�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��44�4�Permissions�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��48�2�File Link Count�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��50�1�Record�xe "record"� Format�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��51�1�Record�xe "record"� Display Attributes�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��52�4�Record�xe "record"� Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��56�8�Information Length�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��64�8�Logical Block�xe "logical block"�s Recorded�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��72�12�Access Date and Time�xe "time:access"� �timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��84�12�Modification Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��96�12�Attribute Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��108�4�Checkpoint�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��112�16�Extended Attribute�xe "extended attribute"� ICB�xe "ICB"� �long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��128�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��160�8�Unique Id�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��168�4�Length of Extended Attribute�xe "extended attribute"�s (=L_EA)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��172�4�Length of Allocation Descriptor�xe "Allocation Descriptor"�s (=L_AD)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��176�L_EA�Extended Attribute�xe "extended attribute"� s�bytes��[L_EA+176]�L_AD�Allocation descriptors�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �21� - File Entry�xe "File Entry"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 261.

ICB Tag (BP 16) removefromTOC

�xe "ICB:Tag"�The File Type�xe "file type"� field of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) for this descriptor shall be recorded as specified in � ref part_File �4�/� ref FFile_Type \n �14.6.6�.

Uid (BP 36) removefromTOC

This field shall specify the user ID of the owner of the file.

Note �SEQ Note *MERGEFORMAT�26�

Originating systems that do not support the notion of user IDs will probably use an arbitrary user ID (and group ID�xe "group ID"�). For various historical reasons, it is recommended such systems do not choose 0 for these IDs.

Gid (BP 40) removefromTOC

This field shall specify the group ID�xe "group ID"� of the owner of the file.

Permissions (BP 44) removefromTOC

This field shall specify the access�xe "file access"��xe "permissions"� allowed to the current file for certain classes of users as follows:

If the user's user ID is the same as the Uid field, then bits 10-14 shall apply.

Otherwise, if the user's group ID is the same as the Gid field, then bits 5-9 shall apply.

Otherwise, bits 0-4 shall apply.

The allowed access is shown in figure � ref part_File �4�/� REF FAllowed_accessP * MERGEFORMAT �22�.

Bit�Interpretation��0�Other: If set to ZERO, shall mean that the user may not execute the file; If set to ONE, shall mean that the user may execute the file.��1�Other: If set to ZERO, shall mean that the user may not write the file; If set to ONE, shall mean that the user may write the file.��2�Other: If set to ZERO, shall mean that the user may not read the file; If set to ONE, shall mean that the user may read the file.��3�Other: If set to ZERO, shall mean that the user may not change any attributes of the file; If set to ONE, shall mean that the user may change attributes of the file.��4�Other: If set to ZERO, shall mean that the user may not delete the file; If set to ONE, shall mean that the user may delete the file.��5�Group: If set to ZERO, shall mean that the user may not execute the file; If set to ONE, shall mean that the user may execute the file.��6�Group: If set to ZERO, shall mean that the user may not write the file; If set to ONE, shall mean that the user may write the file.��7�Group: If set to ZERO, shall mean that the user may not read the file; If set to ONE, shall mean that the user may read the file.��8�Group: If set to ZERO, shall mean that the user may not change any attributes of the file; If set to ONE, shall mean that the user may change attributes of the file.��9�Group: If set to ZERO, shall mean that the user may not delete the file; If set to ONE, shall mean that the user may delete the file.��10�Owner: If set to ZERO, shall mean that the user may not execute the file; If set to ONE, shall mean that the user may execute the file.��11�Owner: If set to ZERO, shall mean that the user may not write the file; If set to ONE, shall mean that the user may write the file.��12�Owner: If set to ZERO, shall mean that the user may not read the file; If set to ONE, shall mean that the user may read the file.��13�Owner: If set to ZERO, shall mean that the user may not change any attributes of the file; If set to ONE, shall mean that the user may change attributes of the file.��14�Owner: If set to ZERO, shall mean that the user may not delete the file; If set to ONE, shall mean that the user may delete the file.��15-31�Reserved: Shall be set to ZERO.��Figure � SEQ SEQ_FIGURE_FileStructure �22� - Allowed access

Note �SEQ Note *MERGEFORMAT�27�

File access schemes are subject to agreement between the originator and recipient of the medium as the meanings of both user IDs and group IDs are implementation dependent; indeed, the permission�xe "permission"� and file access�xe "file access"� models of the receiving and originating system�xe "system:originating"�s may be incompatible.

The question of how to interpret permissions on systems which do not support user IDs and group ID�xe "group ID"�s is outside the scope�xe "scope"� of Part � ref part_File �4�. However, if a system uses the Uid, Gid and Permissions fields, it is recommended that such systems use and set all three (owner, group, other) sets of permissions�xe "permission"�. It is also recommended that the Uid, Gid and Permissions fields be mapped to the appropriate fields in the implementation.

File Link Count (BP 48) removefromTOC

This field shall specify the number of File Identifier Descriptor�xe "File Identifier Descriptor"�s identifying this ICB.

Note �SEQ Note *MERGEFORMAT�28�

Implementations should not blindly copy the contents of this field from the source File Entry�xe "File Entry"� when copying a directory�xe "directory"� hierarchy�xe "directory:hierarchy"� onto a volume. This field should only be incremented as links are made.

Record Format (BP 50) removefromTOC

�xe "record"�This field shall specify a number identifying the format of the information in the file as shown in figure � ref part_File �4�/� REF FInformation_format * MERGEFORMAT �23�.

Number�Interpretation��0�Shall mean that the structure of the information recorded in the file is not specified by this field.��1�Shall mean that the information in the file is a sequence of padded fixed-length records (see � ref part_Record �5�/� ref RPadded_fixed_length_record \n �9.2.1�).��2�Shall mean that the information in the file is a sequence of fixed-length records (see � ref part_Record �5�/� ref RFixed_length_record \n �9.2.2�).��3�Shall mean that the information in the file is a sequence of variable-length-8 records (see � ref part_Record �5�/� ref RVariable_Length_8 \n �9.2.3.1�).��4�Shall mean that the information in the file is a sequence of variable-length-16 records (see � ref part_Record �5�/� ref RVariable_Length_16 \n �9.2.3.2�).��5�Shall mean that the information in the file is a sequence of variable-length-16-MSB�xe "MSB"� records (see � ref part_Record �5�/� ref RVariable_Length_16_MSB \n �9.2.3.3�).��6�Shall mean that the information in the file is a sequence of variable-length-32 records (see � ref part_Record �5�/� ref RVariable_Length_32 \n �9.2.3.4�).��7�Shall mean that the information in the file is a sequence of stream-print records (see � ref part_Record �5�/� ref RStream_Print \n �9.2.4�).��8�Shall mean that the information in the file is a sequence of stream-LF records (see � ref part_Record �5�/� ref RStream_LF \n �9.2.5�).��9�Shall mean that the information in the file is a sequence of stream-CR records (see � ref part_Record �5�/� ref RStream_CR \n �9.2.6�).��10�Shall mean that the information in the file is a sequence of stream-CRLF records (see � ref part_Record �5�/� ref RStream_CRLF \n �9.2.7�).��11�Shall mean that the information in the file is a sequence of stream-LFCR records (see � ref part_Record �5�/� ref RStream_LFCR \n �9.2.8�).��12-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_FileStructure �23� - Information format

If the File Type�xe "file type"� field of the ICB Tag field contains 1, 2, 3, 4, 8, 11 or 12, the Record�xe "record"� Format field shall contain 0.

Record Display Attributes (BP 51) removefromTOC

�xe "record"�This field shall specify certain intended display attributes�xe "display attributes"� of the records in a file as shown in figure � ref part_File �4�/� REF FRecord_display_characteristics * MERGEFORMAT �24�.

Attributes�Interpretation��0�Shall mean that the manner of display of a record�xe "record"� is not specified by this field.��1�Shall mean that each record�xe "record"� shall be displayed on a character-imaging device�xe "device"� according to � ref part_Record �5�/� ref RDisplay_LF_CR \n �9.3.1�.��2�Shall mean that each record�xe "record"� shall be displayed on a character-imaging device�xe "device"� according to � ref part_Record �5�/� ref RDisplay_First_Byte \n �9.3.2�.��3�Shall mean that each record�xe "record"� shall be displayed on a character-imaging device�xe "device"� according to � ref part_Record �5�/� ref RDisplay_Implied \n �9.3.3�.��4-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_FileStructure �24� - Record�xe "record"� display characteristics

Record Length (BP 52) removefromTOC

If the Record�xe "record"� Format field contains the number 0, the interpretation of the Record Length field is subject to agreement between the originator and recipient of the medium.

If the Record�xe "record"� Format field contains either 1 or 2, the Record Length field shall specify the length, in bytes, of each record in the file.

If the Record�xe "record"� Format field contains a number in the range 3-11 inclusive, the Record Length field shall specify the maximum length, in bytes, of a record that may be recorded in the file.

Information Length (BP 56) removefromTOC

The file size in bytes. This shall be equal to the sum of the Information Lengths of the allocation descriptors for the body of the file (see � ref part_File �4�/� ref FData_Space_of_a_File \n �8.8.2� and � ref part_File �4�/� ref FAllocation_Descriptors_Description \n �12�).

Note �SEQ Note *MERGEFORMAT�29�

This is not necessarily the number of recorded bytes. There may be unrecorded extents or there may be ext_ad (� ref part_File �4�/� ref Fext_ad \n �14.14.3�) allocation descriptors.

Logical Blocks Recorded (BP 64) removefromTOC

The number of recorded logical block�xe "logical block"�s specified by the allocation descriptors for the body of the file (see � ref part_File �4�/� ref FDescription_of_Files \n �12.1�).

Access Date and Time (BP 72) removefromTOC

This field shall specify the most recent date and time of the day of file creation or read access to the file prior to recording this File Entry�xe "File Entry"�. This date and time shall not be earlier than the File Creation Date and Time specified in the File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"�, if any.

Note �SEQ Note *MERGEFORMAT�30�

This departs a little from the interpretation in ISO/IEC 9945�xe "ISO/IEC 9945"�-1 in that read accesses since this File Entry�xe "File Entry"� was recorded are ignored. This is intended to reduce updates on write-once media.

Modification Date and Time (BP 84) removefromTOC

This field shall specify the most recent date and time of the day of file creation or write access to the file. This date and time shall not be earlier than the File Creation Date and Time specified in the File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"�, if any.

Attribute Date and Time (BP 96) removefromTOC

This field shall specify the most recent date and time of the day of file creation or modification of the attributes of the file. This date and time shall not be earlier than the File Creation Date and Time specified in the File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"�, if any.

Checkpoint (BP 108) removefromTOC

This field shall contain 1 for the first instance of a file and shall be incremented by 1 when directed to do so by the user. Part � ref part_File �4� does not specify any relationship between the Checkpoint field and the File Version Number field of the directory�xe "directory"� descriptor�xe "directory:descriptor"� identifying the file.

Note �SEQ Note *MERGEFORMAT�31�

This field allows the user to label sequences of instances of a file with a monotonic increasing numeric tag�xe "tag"�. It has an interpretation similar to that of the File Version Number but is not part of the file's identification and need not have the same value as the File Version Number. The motivation is that the user will often have no control over when an implementation will flush a file to disk (and thus creating a new instance). In this situation, the user may simply increment the Checkpoint field when it is appropriate.

Extended Attribute ICB (BP 112) removefromTOC

This field shall specify the ICB�xe "ICB"� describing the extended attribute�xe "extended attribute"� file�xe "extended attribute:file"� for the file. If the extent�xe "extent"�'s length is 0, no such ICB is specified.

Implementation Identifier (BP 128) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use field, if any, of the allocation descriptors for this File Entry. If this field contains all #00 bytes, then no such implementation is identified. The scope of this regid includes the contents of the descriptors that specify the contents and attributes of the file described by this descriptor.

Unique Id (BP 160) removefromTOC

This field shall specify a numeric identifier for this file. All File Entries with the same contents of this field shall describe the same file or directory�xe "directory"�.

Length of Extended Attributes (=L_EA) (BP 168) removefromTOC

This field shall specify the length, in bytes, of the Extended Attribute�xe "extended attribute"�s field. L_EA shall be an integral multiple of 4.

Length of Allocation Descriptors (=L_AD) (BP 172) removefromTOC

�xe "Allocation Descriptor"�This field shall specify the length, in bytes, of the Allocation Descriptors field.

Extended Attributes (BP 176) removefromTOC

�xe "extended attribute"�This field shall contain an extended attributes space (see � ref part_File �4�/� ref FExtended_Attributes \n �9.1�). The recorded extended attributes shall occupy at most L_EA bytes and any unused bytes shall be set to #00.

Allocation Descriptors (BP [L_EA+176]) removefromTOC

�xe "Allocation Descriptor"�This field shall be a sequence of allocation descriptors recorded as specified in � ref part_File �4�/� ref FDescription_of_Files \n �12.1�. Any such allocation descriptor which is specified as unrecorded and unallocated (see � ref part_File �4�/� ref FExtent_Length \n �14.14.1.1�) shall have its Extent Location field set to 0.

Extended Attributes

�xe "extended attribute"�In this clause, the term “current file�xe "current file"� ” shall refer to the file that the extended attribute is associated with.

Extended Attribute Header Descriptor

The Extended Attribute�xe "extended attribute"� Header Descriptor�xe "Extended Attribute Header Descriptor"��xe "Attribute Header Descriptor"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FExtended_Attribute_Header_Descriptor_fo * MERGEFORMAT �25�.

RBP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=262)��16�4�Implementation Attributes Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Application�xe "application"� Attributes Location�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_FileStructure �25� - Extended Attribute�xe "extended attribute"� Header Descriptor�xe "Extended Attribute Header Descriptor"��xe "Attribute Header Descriptor"� format

Descriptor Tag (RBP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 262.

Implementation Attributes Location (RBP 16) removefromTOC

This field shall specify the start of the implementation use�xe "implementation use"� extended attribute�xe "extended attribute"�s as a byte offset from the start of an extended attributes space in which extended attributes of the current file shall be recorded.

Application Attributes Location (RBP 20) removefromTOC

This field shall specify the start of the application use extended attributes as a byte offset from the start of an extended attributes space in which extended attributes of the current file shall be recorded.

Generic format

An Extended Attribute shall be recorded in the format shown in figure � ref part_File �4�/� REF FGeneric_extended_attribute_format * MERGEFORMAT �26�. The specification for each extended attribute shall specify the interpretation of the Attribute Subtype and Attribute Data fields of the extended attribute.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��5�3�Reserved�#00 bytes��8�4�Attribute Length (=A_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�A_L-12�Attribute Data�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �26� - Generic extended attribute�xe "extended attribute"� format

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify the type of the extended attribute�xe "extended attribute"�.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify the subtype of the extended attribute�xe "extended attribute"�.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (=A_L) (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�32�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Attribute Data (RBP 12) removefromTOC

The interpretation of this field shall depend on the value of the Attribute Type�xe "attribute type"� field.

Note �SEQ Note *MERGEFORMAT�33�

The only meaning for the Attribute Length field (A_L) is the distance in bytes from the start of the extended attribute�xe "extended attribute"� to the start of the next, if any, extended attribute. The only deduction one can make is that the amount of attribute specific data is not greater than A_L-12. It is recommended that extended attributes with variable-sized data record the data length immediately after the Attribute Length field.

This scheme allows for arbitrary alignment�xe "alignment"� of the attributes and their data. In particular, there may be padding�xe "padding"� bytes between the end of the data for an attribute and the start of the next attribute. Implementations are not required to preserve any attribute alignments.

Character Set Information

The Character Set�xe "character set"� Information Extended Attribute �xe "extended attribute:Character Set Information"��xe "extended attribute"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FCharacter_Set_Information_Extended_Attr * MERGEFORMAT �27�. The Character Set�xe "character set"� Information Extended Attribute may be used to specify the coded character�xe "character:coded"� sets used in interpreting the contents of the current file�xe "current file"�.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 1��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Escape Sequences Length (=ES_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�1�Character Set Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��17�ES_L�Escape Sequences�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �27� - Character Set Information Extended Attribute format

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 1.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�34�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Escape Sequences Length (=ES_L) (RBP 12) removefromTOC

This field shall specify the length in bytes of the Escape Sequences field.

Character Set Type (RBP 16) removefromTOC

This field shall specify the character set�xe "character set"� type as specified in � ref part_General �1�/� ref Gcharspec \n �7.2.1�, except that any information that would be recorded in the Character Set Information field shall instead be recorded in the Escape Sequences field.

Escape Sequences (RBP 17) removefromTOC

This field shall specify one or more escape sequences�xe "escape sequences"�, control sequences or both escape sequences and control sequences according to ECMA-35�xe "ISO 2022"� and ECMA-48�xe "ISO/IEC 6429"� that designate and implicitly invoke the coded character�xe "character:coded"� set�xe "character set"�s to be used in interpreting the contents of the current file in an 8-bit environment according to ECMA-35 or ISO/IEC 10646�1. These sequences shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

Alternate Permissions

�xe "Extended Attribute:Alternate Permissions"�The Alternate Permissions extended attribute�xe "extended attribute"� specifies fields that can be used to support the file access�xe "file access"� permission�xe "permission"� scheme of ECMA-119 for the current file�xe "ISO 9660"�. It shall be recorded in the format shown in figure � ref part_File �4�/� REF FAlternate_Permissions_Extended_Attribut * MERGEFORMAT �28�.

Note �SEQ Note *MERGEFORMAT�35�

This extended attribute�xe "extended attribute"� is an extension of the permissions field in ECMA-119�xe "ISO 9660"� to allow for the case of writing information. In addition, it eliminates the inconsistencies of the specification in ECMA-119.

If the user's user ID is the same as the Owner Identification field and the user's group ID�xe "group ID"� is the same as the Group Identification field, the user shall be treated as the owner of the file.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 3��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�2�Owner Identification�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��14�2�Group Identification�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��16�2�Permission�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��Figure � SEQ SEQ_FIGURE_FileStructure �28� - Alternate Permissions Extended Attribute format

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 3.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�36�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Owner Identification (RBP 12) removefromTOC

This field shall specify as a 16-bit number an identification of the owner of the file who is a member of the group id�xe "group ID"�entified by the Group Identification field of this extended attribute�xe "extended attribute"�.

If the number in this field is 0, this shall indicate that there is no owner identification specified for the file. In this case, the Group Identification field shall be set to 0.

Group Identification (RBP 14) removefromTOC

This field shall specify as a 16-bit number an identification of the group of which the owner of the file is a member.

For this number, values from 1 to a value subject to agreement between the originator and recipient of the medium shall identify the group as belonging to the class of user referred to as System.

If the number in this field is 0, this shall indicate that there is no group id�xe "group ID"�entification specified for the file. In this case, the Owner Identification field shall be set to 0.

Permissions (RBP 16) removefromTOC

�xe "permission"�This field shall specify, for certain classes of users, if read, write, execute, and delete access is allowed for the file. The desired access shall be given if at least one of the following conditions is true:

the user's user ID is the same as the Owner Identification field and the user's group ID�xe "group ID"� is the same as the Group Identification field and bits 4-7 allow the desired access,

bits 12-15 allow the desired access,

the user's group ID�xe "group ID"� is the same as the Group Identification field and bits 8-11 allow the desired access,

if the user's group ID�xe "group ID"� identifies a group of the System class of user and bits 0-3 allow the desired access.

The allowed access is shown in figure � ref part_File �4�/� REF FAllowed_access * MERGEFORMAT �29�.

Bit�Interpretation��0�If set to ZERO, shall mean that a user who is a member of a group of the System class of user may read the file. If set to ONE, shall mean that read access is not allowed by this bit.��1�If set to ZERO, shall mean that a user who is a member of a group of the System class of user may write the file. If set to ONE, shall mean that write access is not allowed by this bit.��2�If set to ZERO, shall mean that a user who is a member of a group of the System class of user may execute the file. If set to ONE, shall mean that execute access is not allowed by this bit.��3�If set to ZERO, shall mean that a user who is a member of a group of the System class of user may delete the file. If set to ONE, shall mean that delete access is not allowed by this bit.��4�If set to ZERO, shall mean that the owner may read the file. If set to ONE, shall mean that read access is not allowed by this bit.��5�If set to ZERO, shall mean that the owner may write the file. If set to ONE, shall mean that write access is not allowed by this bit.��6�If set to ZERO, shall mean that the owner may execute the file. If set to ONE, shall mean that execute access is not allowed by this bit.��7�If set to ZERO, shall mean that the owner may delete the file. If set to ONE, shall mean that delete access is not allowed by this bit.��8�If set to ZERO, shall mean that any user who has a group ID�xe "group ID"� that is the same as the Group Identification field may read the file. If set to ONE, shall mean that read access is not allowed by this bit.��9�If set to ZERO, shall mean that any user who has a group ID�xe "group ID"� that is the same as the Group Identification field may write the file. If set to ONE, shall mean that write access is not allowed by this bit.��10�If set to ZERO, shall mean that any user who has a group ID�xe "group ID"� that is the same as the Group Identification field may execute the file. If set to ONE, shall mean that execute access is not allowed by this bit.��11�If set to ZERO, shall mean that any user who has a group ID�xe "group ID"� that is the same as the Group Identification field may delete the file. If set to ONE, shall mean that delete access is not allowed by this bit.��12�If set to ZERO, shall mean that any user may read the file. If set to ONE, shall mean that read access is not allowed by this bit.��13�If set to ZERO, shall mean that any user may write the file. If set to ONE, shall mean that write access is not allowed by this bit.��14�If set to ZERO, shall mean that any user may execute the file. If set to ONE, shall mean that execute access is not allowed by this bit.��15�If set to ZERO, shall mean that any user may delete the file. If set to ONE, shall mean that delete access is not allowed by this bit.��Figure � SEQ SEQ_FIGURE_FileStructure �29� - Allowed access

Note �SEQ Note *MERGEFORMAT�37�

File access schemes are subject to agreement between the originator and recipient of the medium as the meanings of both user IDs and group IDs are implementation dependent; indeed, the permission�xe "permission"� and file access�xe "file access"� models of the receiving and originating system�xe "system:originating"�s may be incompatible.

The question of how to interpret permissions on systems which do not support user IDs and group ID�xe "group ID"�s is outside the scope�xe "scope"� of Part � ref part_File �4�. However, if a system uses the Alternate Permissions extended attribute, it is recommended that such systems use and set all four (system, owner, group, other) sets of permissions�xe "permission"�s. It is also recommended that the Owner Identification, Group Identification and Permission fields be mapped to the appropriate fields in the implementation.

File Times Extended Attribute

The File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"� specifies certain dates and times for the current file and shall be recorded as shown in figure � ref part_File �4�/� REF FFile_Times_Extended_Attribute_format * MERGEFORMAT �30�.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 5��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Data Length(=D_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�4�File Time Existence�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�D_L�File Times�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �30� - File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"� format�xe "extended attribute:format"�

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 5.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�38�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Data Length(=D_L) (RBP 12) removefromTOC

This field shall contain the number of bytes used to record the dates and times specified by the File Time Existence field.

File Time Existence (RBP 16) removefromTOC

This field shall specify which dates and times shall be recorded in the File Times field. A bit in this field corresponds to a particular date and time as shown in figure � ref part_File �4�/� REF FFile_Times * MERGEFORMAT �31�. If the bit is ZERO, then that date and time shall not be recorded. If the bit is ONE, then that date and time shall be recorded. Bits not specified in figure � ref part_File �4�/� REF FFile_Times * MERGEFORMAT �31� are reserved for future standardisation and shall be set to ZERO.

Bit�Interpretation��0�File Creation Date and Time: the date and time of the day at which the file�xe "current file"� was created.��2�File Deletion Date and Time: the date and time of the day after which the file�xe "current file"� may be deleted. If the bit is ZERO, the file may not be deleted unless requested by the user.��3�File Effective Date and Time: the date and time of the day after which the file�xe "current file"� may be used. If the bit is ZERO, the file may be used at once.��5�File Last Backup Date and Time: the date and time of the day at which the file was last backed up.��Figure � SEQ SEQ_FIGURE_FileStructure �31� - File Times

Note �SEQ Note *MERGEFORMAT�39�

Bits 1 and 4 are deliberately unused for compatibility with ECMA-168. Attribute type 5 in ECMA-168 also specifies File Last Access Date and Time and File Modification Date and Time. Those dates and times are specified in the File Entry (see � ref part_File �4�/� ref FAccess_Time \n �14.9.12� and � ref part_File �4�/� ref FModification_Time \n �14.9.13�) of Part � ref part_File �4�.

File Times (RBP 20) removefromTOC

The dates and times specified in the File Times Existence field shall be recorded contiguously in this field, each as a timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�), in ascending order of their bit positions�xe "bit position"�.

Information Times Extended Attribute

The Information Times Extended Attribute�xe "Extended Attribute:Information Times"��xe "extended attribute"� specifies certain dates and times for the information in the current file�xe "current file"� and shall be recorded as shown in figure � ref part_File �4�/� REF FInformation_Times_Extended_Attribute_fo * MERGEFORMAT �32�.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 6��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Data Length(=D_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�4�Information Time Existence�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�D_L�Information Times�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �32� - Information Times Extended Attribute�xe "Extended Attribute:Information Times"��xe "extended attribute"� format�xe "extended attribute:format"�

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 6.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�40�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Data Length(=D_L) (RBP 12) removefromTOC

This field shall contain the number of bytes used to record the dates and times specified by the Information Time Existence field.

Information Time Existence (RBP 16) removefromTOC

This field shall specify which dates and times shall be recorded in the Information Times field. A bit in this field corresponds to a particular date and time as shown in figure � ref part_File �4�/� REF FInformation_Times * MERGEFORMAT �33�. If the bit is ZERO, then that date and time shall not be recorded. If the bit is ONE, then that date and time shall be recorded. Bits not specified in figure � ref part_File �4�/� REF FInformation_Times * MERGEFORMAT �33� are reserved for future standardisation and shall be set to ZERO.

Bit�Interpretation��0�Information Creation Date and Time: the date and time of the day at which the information in the file�xe "current file"� was created.��1�Information Last Modification Date and Time: the date and time of the day at which the information in the file�xe "current file"� was last modified.��2�Information Expiration Date and Time: the date and time of the day after which the information in the file�xe "current file"� may be regarded as obsolete. If the bit is ZERO, the information in the file shall not be regarded as obsolete unless requested by the user.��3�Information Effective Date and Time: the date and time of the day after which the information in the file�xe "current file"� may be used. If the bit is ZERO, the information in the file may be used at once.��Figure � SEQ SEQ_FIGURE_FileStructure �33� - Information Times

Information Times (RBP 20) removefromTOC

The dates and times specified in the Information Times Existence field shall be recorded contiguously in this field, each as a timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�), in ascending order of their bit positions�xe "bit position"�.

Device Specification

The Device�xe "device"� Specification Extended Attribute�xe "Extended Attribute:Device Specification"��xe "extended attribute"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FDevice_Specification_Extended_Attribute * MERGEFORMAT �34�. It shall specify a device subject to agreement between the originator and recipient of the medium.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 12��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Implementation Use�xe “implementation use”� Length (=IU_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�4�Major Device�xe "device"� Identification�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Minor Device�xe "device"� Identification�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��24�IU_L�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �34� - Device�xe "device"� Specification Extended Attribute�xe "Extended Attribute:Device Specification"��xe "extended attribute"� format�xe "extended attribute:format"�

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 12.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute.

Note �SEQ Note *MERGEFORMAT�41�

It is recommended that the extended attribute length be an integral multiple of 4.

Implementation Use Length (=IU_L) (RBP 12) removefromTOC

This field shall specify the length in bytes of the Implementation Use field.

Major Device Identification (RBP 16) removefromTOC

�xe "device"�This field may be used to specify a device. The contents of this field shall be subject to agreement between the originator and recipient of the medium.

Minor Device Identification (RBP 20) removefromTOC

�xe "device"�This field may be used to specify a device. The contents of this field shall be subject to agreement between the originator and recipient of the medium.

Implementation Use (RBP 24) removefromTOC

�xe "implementation use"�If IU_L is greater than 0, this field shall specify an identification of an implementation, recorded as a regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) in the first 32 bytes of this field, which can recognise and act upon the remainder of this field, which shall be reserved for implementation use and its contents are not specified by this ECMA Standard.

Implementation Use Extended Attribute

The Implementation Use�xe "implementation use"� Extended Attribute�xe "Extended Attribute:Implementation Use"��xe "extended attribute"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FImplementation_Use_Extended_Attribute_f * MERGEFORMAT �35�.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 2 048��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Implementation Use�xe "implementation use"� Length (=IU_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��48�IU_L�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �35� - Implementation Use�xe "implementation use"� Extended Attribute�xe "Extended Attribute:Implementation Use"��xe "extended attribute"� format�xe "extended attribute:format"�

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 2 048.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�42�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Implementation Use Length (=IU_L) (RBP 12) removefromTOC

This field shall specify the length of the Implementation Use field.

Implementation Identifier (RBP 16) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified. The scope of this regid includes the contents of the descriptors that specify the contents and attributes of the current file.

Implementation Use (RBP 48) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"�. The interpretation of the contents of this field is not specified by Part � ref part_File �4�.

Application Use Extended Attribute

The Application�xe "application"� Use�xe "application:use"� Extended Attribute�xe "Extended Attribute:Application Use"��xe "extended attribute"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FApplication_Use_Extended_Attribute_form * MERGEFORMAT �36�.

RBP�Length�Name�Contents��0�4�Attribute Type�xe "attribute type"��Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�) = 65 536��4�1�Attribute Subtype�xe "attribute subtype"� �Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�) = 1��5�3�Reserved�#00 bytes��8�4�Attribute Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�4�Application�xe "application"� Use�xe "application:use"� Length(=AU_L)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��16�32�Application�xe "application"� Identifier�xe "application:identifier"� �regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��48�AU_L�Application�xe "application"� Use�xe "application:use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �36� - Application�xe "application"� Use�xe "application:use"� Extended Attribute�xe "Extended Attribute:Application Use"��xe "extended attribute"� format�xe "extended attribute:format"�

Attribute Type (RBP 0) removefromTOC

�xe "attribute type"�This field shall specify 65 536.

Attribute Subtype (RBP 4) removefromTOC

�xe "attribute subtype"�This field shall specify 1. All other values are reserved for future standardisation.

Reserved (RBP 5) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Attribute Length (RBP 8) removefromTOC

This field shall specify the length of the entire extended attribute�xe "extended attribute"�.

Note �SEQ Note *MERGEFORMAT�43�

It is recommended that the extended attribute�xe "extended attribute"� length be an integral multiple of 4.

Application Use Length(=AU_L) (RBP 12) removefromTOC

This field shall specify the length of the Application�xe "application"� Use�xe "application:use"� field.

Application Identifier (RBP 16) removefromTOC

�xe "application"��xe "application:identifier"�This field shall specify an identification of an application which can recognise and act upon the contents of the Application Use field. If this field contains all #00 bytes, then no such application is identified. The scope�xe "scope"� of this regid�xe "regid"� includes the contents of the descriptors that specify the contents and attributes of the current file.

Application Use (RBP 48) removefromTOC

This field shall be reserved for application use. The interpretation of the contents of this field is not specified by Part � ref part_File �4�.

Unallocated Space Entry

An Unallocated Space Entry is a direct entry recorded within an ICB and shall be recorded in the format shown in figure � ref part_File �4�/� REF FUnallocated_Space_Entry_format * MERGEFORMAT �37�.

Note �SEQ Note *MERGEFORMAT�44�

This is normally only used for write-once media.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) (Tag=263)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) (Type=1)��36�4�Length of Allocation Descriptor�xe "Allocation Descriptor"�s (=L_AD)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��40�L_AD�Allocation descriptors�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �37� - Unallocated Space�xe "unallocated Space"� Entry�xe "unallocated space:entry"��xe "space:entry"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 263.

ICB Tag (BP 16) removefromTOC

�xe "ICB:Tag"�The File Type�xe "file type"� field of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) for this descriptor shall contain 1.

Length of Allocation Descriptors (=L_AD) (BP 36) removefromTOC

This field specifies the length, in bytes, of the Allocation Descriptor�xe "Allocation Descriptor"�s field. L_AD+40 shall not be greater than the size of a logical block�xe "logical block"�.

Allocation Descriptors (BP 40) removefromTOC

�xe "Allocation Descriptor"�This field shall contain allocation descriptors.

The type of allocation descriptor shall be specified by the Flags�xe "flags"� field in the ICB�xe "ICB"� Tag�xe "ICB:Tag"� field (see � ref part_File �4�/� ref FICB_Flags \n �14.6.8�). The extent�xe "extent"� length fields of these allocation descriptors shall be an integral multiple of the logical block�xe "logical block"� size�xe "logical block:size"�.

Space Bitmap Descriptor

�xe "Space Bitmap Descriptor"��xe "Bitmap Descriptor"�A Space Bitmap�xe "space:bitmap"� descriptor specifies a bit for every logical block�xe "logical block"� in the partition and shall be recorded in the format shown in figure � ref part_File �4�/� REF FSpace_Bitmap_Descriptor_format * MERGEFORMAT �38�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=264)��16�4�Number of Bits (=N_BT)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��20�4�Number of Bytes (=N_B)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��24�N_B�Bitmap�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �38� - Space Bitmap�xe "space:bitmap"� Descriptor�xe "Space Bitmap Descriptor"��xe "Bitmap Descriptor"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 264.

Number of Bits (=N_BT) (BP 16) removefromTOC

This field shall specify the number of valid bits in the Bitmap field.

Number of Bytes (=N_B) (BP 20) removefromTOC

This field shall specify the number of bytes in the Bitmap field. The length of this field shall not be less than ip((N_BT+7)/8) bytes.

Bitmap (BP 24) removefromTOC

This field specifies a bit for each logical block in the partition. The bit for logical block s is bit rem(s,8) in byte ip(s/8), where byte 0 is the first byte in this field.

Partition Integrity Entry

A Partition Integrity Entry�xe "integrity:partition"� is a direct entry�xe "direct entry"� recorded in an ICB�xe "ICB"� and shall be recorded in the format shown in figure � ref part_File �4�/� REF FPartition_Integrity_Entry_format * MERGEFORMAT �39�.

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) (Tag=265)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) (Type=2)��36�12�Recording Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��48�1�Integrity Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��49�175�Reserved�#00 bytes��224�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��256�256�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �39� - Partition Integrity Entry�xe "integrity:partition"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� � ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 265.

ICB Tag (BP 16) removefromTOC

�xe "ICB:Tag"�The File Type�xe "file type"� field of the icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�) for this descriptor shall contain 2.

Recording Date and Time (BP 36) removefromTOC

This field shall specify the date and time of the day of recording of this Integrity Entry.

Integrity Type (BP 48) removefromTOC

This field shall specify the type of Integrity Entry. The types are shown in figure � ref part_File �4�/� REF FIntegrity_Entry_interpretation * MERGEFORMAT �40�.

Type�Interpretation��0�Shall mean that the entry is an Open Integrity�xe "integrity:open"� Entry.��1�Shall mean that the entry is a Close Integrity�xe "integrity:close"� Entry.��2�Shall mean that the entry is a Stable Integrity Entry�xe "integrity:stable"�.��3-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_FileStructure �40� - Integrity Entry interpretation

Reserved (BP 49) removefromTOC

This field shall be reserved for future standardisation and all bytes shall be set to #00.

Implementation Identifier (BP 224) removefromTOC

This field shall specify an identification of an implementation which can recognise and act upon the contents of the Implementation Use�xe "implementation use"� field. If this field contains all #00 bytes, then no such implementation is identified. The scope�xe "scope"� of this regid�xe "regid"� includes the contents of the partition associated with this descriptor.

Implementation Use (BP 256) removefromTOC

�xe "implementation use"�This field shall be reserved for implementation use. Its content is not specified by this Part.

Allocation descriptors

Short Allocation Descriptor

The Short Allocation Descriptor, designated as short_ad, shall be recorded in the format shown in figure � ref part_File �4�/� REF Fshort_ad_format * MERGEFORMAT �41�.

RBP�Length�Name�Contents��0�4�Extent Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�4�Extent Position�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��Figure � SEQ SEQ_FIGURE_FileStructure �41� - short_ad format

Extent Length (RBP 0) removefromTOC

The 30 least significant bits of this field shall be interpreted as a 30-bit unsigned binary number specifying the length of the extent�xe "extent"� in bytes. Unless otherwise specified, the length shall be an integral multiple of the logical block�xe "logical block"� size�xe "logical block:size"�. The 2 most significant bits shall be interpreted as a 2-bit unsigned binary number specifying the type of the extent as described in figure � ref part_File �4�/� REF FExtent_interpretation * MERGEFORMAT �42�. If the 30 least significant bits are set to ZERO, the two most significant bits shall also be set to ZERO.

Value�Interpretation��0�Extent recorded and allocated��1�Extent not recorded but allocated��2�Extent not recorded and not allocated��3�The extent�xe "extent"� is the next extent of allocation descriptors (see � ref part_File �4�/� ref FAllocation_Descriptors_Description \n �12�)��Figure � SEQ SEQ_FIGURE_FileStructure �42� - Extent interpretation

Extent Position (RBP 4) removefromTOC

This field shall specify the logical block�xe "logical block"� number�xe "logical block:number"�, within the partition the descriptor is recorded on, of the extent�xe "extent"�. If the extent's length is 0, no extent is specified and this field shall contain 0.

Long Allocation Descriptor

The Long Allocation Descriptor�xe "Allocation Descriptor:Long"��xe "Allocation Descriptor"�, designated by long_ad, shall be recorded in the format shown in figure � ref part_File �4�/� REF Flong_ad_format * MERGEFORMAT �43�.

RBP�Length�Name�Contents��0�4�Extent Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�6�Extent Location�lb_addr (� ref part_File �4�/� ref Flb_addr \n �7.1�)��10�6�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �43� - long_ad format

Extent Length (RBP 0) removefromTOC

This field shall be recorded as specified in � ref part_File �4�/� ref FExtent_Length \n �14.14.1.1�.

Extent Location (RBP 4) removefromTOC

This field shall specify the logical block�xe "logical block"� number�xe "logical block:number"� of the extent�xe "extent"�. If the extent's length is 0, no extent is specified and this field shall contain 0.

Implementation Use (RBP 10) removefromTOC

�xe "implementation use"�This field shall be reserved for implementation use. Its content is not specified by this Part.

Note �SEQ Note *MERGEFORMAT�45�

The long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) is intended for use when the extent's location may be on another partition (either on this volume or another).

Extended Allocation Descriptor

The Extended Allocation Descriptor�xe "Allocation Descriptor:Extended"��xe "Allocation Descriptor"�, designated by ext_ad, shall be recorded in the format shown in figure � ref part_File �4�/� REF Fext_ad_format * MERGEFORMAT �44�.

RBP�Length�Name�Contents��0�4�Extent Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��4�4�Recorded Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��8�4�Information Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��12�6�Extent Location�lb_addr (� ref part_File �4�/� ref Flb_addr \n �7.1�)��18�2�Implementation Use�xe "implementation use"� �bytes��Figure � SEQ SEQ_FIGURE_FileStructure �44� - ext_ad format

Extent Length (RBP 0) removefromTOC

This field shall be recorded as specified in � ref part_File �4�/� ref FExtent_Length \n �14.14.1.1�.

Recorded Length (RBP 4) removefromTOC

The two most significant bits of this field are reserved for future standardisation and shall be set to ZERO. The 30 least significant bits of this field shall be interpreted as a 30-bit unsigned binary number specifying the number of bytes recorded in the extent�xe "extent"�. This may be different from the number of bytes specified in the Extent Length field.

Information Length (RBP 8) removefromTOC

This field shall specify how many bytes of information are recorded starting at the first byte of the extent�xe "extent"� identified by the Extent Location field. This may be different from the value in either the Extent Length field or the Recorded Length field.

Extent Location (RBP 12) removefromTOC

This field shall specify the logical block�xe "logical block"� number�xe "logical block:number"� of the extent�xe "extent"�. If the extent's length is 0, no extent is specified and this field shall contain all #00 bytes.

Implementation Use (RBP 18) removefromTOC

This field shall be reserved for implementation use�xe "implementation use"�. Its content is not specified by Part.

Note �SEQ Note *MERGEFORMAT�46�

The ext_ad (� ref part_File �4�/� ref Fext_ad \n �14.14.3�) is similar to the long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�) except that while Information Length bytes are represented in the extent�xe "extent"�, only Recorded Length bytes have been recorded. (Most likely, a compression�xe "compression"� algorithm has been applied on the extent.) The Recorded Length allows implementations to copy files (and their extents) without knowing how or why the Recorded Length differs from the Information Length.

Logical Volume Header Descriptor

The Logical Volume Header Descriptor�xe "Logical Volume Header Descriptor"� shall specify a numeric file and directory�xe "directory"� identifier and shall be recorded with the format shown in figure � ref part_File �4�/� REF VLogical_Volume_Header_Descriptor_format * MERGEFORMAT �45� (see � ref part_File �4�/� ref FPart_Interface_Input \n �3.1� for where this descriptor is recorded).

RBP�Length�Name�Contents��0�8�Unique Id�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��8�24�Reserved�#00 bytes��Figure � SEQ SEQ_FIGURE_FileStructure �45� - Logical Volume Header Descriptor format

Unique Id (RBP 0) removefromTOC

This field shall specify a value which is greater than the value of the Unique Id field in any File Entry�xe "File Entry"� recorded on the associated logical volume�xe "logical volume"�.

Note �SEQ Note *MERGEFORMAT�47�

The intended use of this field is to facilitate allocation of unique�xe "unique"� identifiers for files and directories�xe "directory"� (see � ref part_File �4�/� ref FUnique_ID \n �14.9.18�). In order to avoid having to examine every file and directory, this field should be maintained even if the rest of the volume is not conformant with this ECMA Standard. An implementation might record several Open Integrity�xe "integrity:open"� Descriptors consecutively just to maintain this field as a modest increment over the last value recorded. Implementations should not assume any ordering properties for the value of this field; the value might decrease or increase with successive descriptors. In particular, the value in a Close Integrity�xe "integrity:close"� Descriptor might be less than the value in the preceding Open Integrity Descriptor.

Reserved (RBP 8) removefromTOC

This field shall be reserved for future standardisation and all bytes shall contain #00.

Pathname

�xe "pathname"�

Path Component

A Path Component�xe "Path Component"� shall be recorded in the format shown in figure � ref part_File �4�/� REF FPath_Component_format * MERGEFORMAT �46�.

RBP�Length�Name�Contents��0�1�Component Type�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��1�1�Length of Component Identifier (= L_CI)�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��2�2�Component File Version Number�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��4�L_CI�Component Identifier �d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�)��Figure � SEQ SEQ_FIGURE_FileStructure �46� - Path Component�xe "Path Component"� format

Component Type (RBP 0) removefromTOC

This field shall specify the component type as shown in figure � ref part_File �4�/� REF FComponent_interpretation * MERGEFORMAT �47�.

Type�Interpretation��0�Reserved for future standardisation.��1�If L_CI is not 0, the component specifies the root of a directory�xe "directory"� hierarchy�xe "directory:hierarchy"� subject to agreement between the originator and recipient of the medium. If L_CI is 0, this component shall specify the root of a file system�xe "file system"� as specified in ISO/IEC 9945�xe "ISO/IEC 9945"�-1.��2�The component specifies the root directory�xe "directory:root"��xe "directory"� of the directory hierarchy�xe "directory:hierarchy"� of which the predecessor of the first component in the pathname�xe "pathname"� is a member.��3�The component specifies the parent directory�xe "parent:directory"��xe "directory"� of the predecessor component.��4�The component specifies the same directory�xe "directory"� as the predecessor component.��5�The component identifies an object, either a file or a directory�xe "directory"� or an alias�xe "alias"�, specified by a descriptor of the directory identified by the predecessor component, such that the contents of the File Identifier field of that directory descriptor is identical to the contents of the Component Identifier field.��6-255�Reserved for future standardisation.��Figure � SEQ SEQ_FIGURE_FileStructure �47� - Component interpretation

Length of Component Identifier (= L_CI) (RBP 1) removefromTOC

If the Component Type field contains 1 or 5, this field shall specify the length in bytes of the Component Identifier field. If the Component Type field contains 5, L_CI shall be greater than 0. If the Component Type field does not contain 1 or 5, this field shall contain 0.

Component File Version Number (RBP 2) removefromTOC

This field shall specify the file version number of the component as follows.

If the number in this field is 0, then the highest file version�xe "version"� number of any instance of the entity identified by the Component Identifier field (see � ref part_File �4�/� ref FPathname_Description \n �8.7�) is identified.

If the number in this field is in the range 1 to 32 767 inclusive, this field shall specify the file version�xe "version"� number of the entity identified by the Component Identifier field (see � ref part_File �4�/� ref FPathname_Description \n �8.7�). The numbers 32 768 to 65 535 inclusive are reserved for future standardisation.

If the entity identified by the Component Identifier field (see � ref part_File �4�/� ref FPathname_Description \n �8.7�) is a directory�xe "directory"�, then the value of this field shall be 0.

Note �SEQ Note *MERGEFORMAT�48�

This allows versions of files and aliases to be specified in recorded pathnames.

Component Identifier (RBP 4) removefromTOC

This field shall identify the component.

Extended File Entry

The Extended File Entry is a direct entry recorded as an ICB in the format shown in figure � ref part_File �4�/� ref FExtended_File_Entry_format �48�

BP�Length�Name�Contents��0�16�Descriptor Tag�xe "Descriptor Tag"� �tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�)(Tag=266)��16�20�ICB�xe "ICB"� Tag�xe "ICB:Tag"� �icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�)��36�4�Uid�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��40�4�Gid�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��44�4�Permissions�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��48�2�File Link Count�Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�)��50�1�Record�xe "record"� Format�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��51�1�Record�xe "record"� Display Attributes�Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�)��52�4�Record�xe "record"� Length�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��56�8�Information Length�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��64�8�Object Size�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��72�8�Logical Block�xe "logical block"�s Recorded�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��80�12�Access Date and Time�xe "time:access"� �timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��92�12�Modification Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��104�12�Creation Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��116�12�Attribute Date and Time�timestamp�xe "timestamp"� (� ref part_General �1�/� ref Gtimestamp \n �7.3�)��128�4�Checkpoint�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��132�4�Reserved�#00 bytes��136�16�Extended Attribute�xe "extended attribute"� ICB�xe "ICB"� �long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��152�16�Stream Directory ICB�long_ad (� ref part_File �4�/� ref Flong_ad \n �14.14.2�)��168�32�Implementation Identifier�regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�)��200�8�Unique Id�Uint64 (� ref part_General �1�/� ref GUInt64 \n �7.1.7�)��208�4�Length of Extended Attribute�xe "extended attribute"�s (=L_EA)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��212�4�Length of Allocation Descriptor�xe "Allocation Descriptor"�s (=L_AD)�Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�)��216�L_EA�Extended Attribute�xe "extended attribute"� s�bytes��[L_EA+216]�L_AD�Allocation descriptors�bytes��Figure � SEQ SEQ_FIGURE_FileStructure �48� - Extended File Entry�xe "File Entry"� format

Descriptor Tag (BP 0) removefromTOC

�xe "Descriptor Tag"�The Tag Identifier field of the tag�xe "tag"� (� ref part_File �4�/� ref Ftag \n �7.2�) for this descriptor shall contain 266.

ICB Tag (BP 16) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_ICB_Tag \n �14.9.2�

Uid (BP 36) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_UID \n �14.9.3�

Gid (BP 40) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_GID \n �14.9.4�

Permissions (BP 44) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Permissions \n �14.9.5�

File Link Count (BP 48) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_File_Link_Count \n �14.9.6�

Record Format (BP 50) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Record_Format \n �14.9.7�

Record Display Attributes (BP 51) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Record_Display \n �14.9.8�

Record Length (BP 52) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Record_Length \n �14.9.9�

Information Length (BP 56) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Info_Length \n �14.9.10�

Object Size (BP 64)

The sum of all Information Length fields for all streams of a file (including the default stream). If this file has no streams, the Object Size shall be equal to the Information Length.

Logical Blocks Recorded (BP 72) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Logical_Blocks_Recorded \n �14.9.11�

Access Date and Time (BP 80) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Access_Date \n �14.9.12�

Note �SEQ Note *MERGEFORMAT�49�

The access date and time should reflect the last access to any stream of the file.

Modification Date and Time (BP 92) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Modification_Date \n �14.9.13�

Note � seq Note �50�

The modification date and time should reflect the last modification to any stream of the file.

Creation Date and Time (BP 104)

This field shall specify the date and time of file creation.

Attribute Date and Time (BP 116) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Attribute_Date \n �14.9.14�

Checkpoint (BP 128) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Checkpoint \n �14.9.15�

Extended Attribute ICB (BP 136) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Extended_Attribute_ICB \n �14.9.16�

Stream Directory ICB (BP 152)

This field shall specify the ICB describing the stream directory for the file. If the extent’s length is ZERO, no such ICB is specified.

Implementation Identifier (BP 168) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Implementation_Identifier \n �14.9.17�

Unique Id (BP 200) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Unique_ID \n �14.9.18�

Length of Extended Attributes (=L_EA) (BP 208) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_LEA \n �14.9.19�

Length of Allocation Descriptors (=L_AD) (BP 212) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_LAD \n �14.9.20�

Extended Attributes (BP 216) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Extended_Attributes \n �14.9.21�

Allocation Descriptors (BP [L_EA+216]) removefromTOC

Recorded according to � ref part_File �4�/� ref FFE_Allocation_Descriptors \n �14.9.22�

Levels of medium interchange

�xe "interchange"�Part � ref part_File �4� specifies three levels of medium interchange�xe "interchange"�. The level of a file set�xe "file set"� shall be that level specifying the most restrictions�xe "restrictions"� required to record the file set according to the specifications of Part � ref part_File �4�.

Level 1

At level 1, the following restrictions�xe "restrictions"� shall apply:

The number in any Length of File Identifier field shall not exceed 12.

A File Identifier (see � ref part_File �4�/� ref FFile_Identifier_Descriptor \n �14.4�) for a directory�xe "directory"� shall conform to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FDirectory_file_identifier_schema * MERGEFORMAT �49�. A sequence of fileid-characters shall be a sequence of d-characters (� ref part_General �1�/� ref Gdchars \n �7.2�) excluding SPACE, COMMA, FULL STOP and REVERSE SOLIDUS�xe "character:REVERSE SOLIDUS"� characters except as part of a code extension character�xe "character:code extension"� (see � ref part_General �1�/� ref GCS7_code \n �7.2.9.1�).

[Directory�xe "directory"� File Identifier]{

	<fileid-characters>1+8

}

Figure � SEQ SEQ_FIGURE_FileStructure �49� - Directory�xe "directory"� file identifier�xe "file identifier"� schema�xe "schema"�

A File Identifier (see � ref part_File �4�/� ref FFile_Identifier_Descriptor \n �14.4�) for a non-directory�xe "directory"� file shall conform to the schema�xe "schema"� shown in figure � ref part_File �4�/� REF FNondirectory_file_identifier_schema * MERGEFORMAT �50�.

[Nondirectory File Identifier]{

	<fileid-characters>1+8

	({

		<fileid-characters>1+8

		<FULL STOP character>

		<fileid-characters>0+3

	 }

	({

		<fileid-characters>0+8

		<FULL STOP character>

		<fileid-characters>1+3

	 }

}

Figure � SEQ SEQ_FIGURE_FileStructure �50� - Nondirectory file identifier�xe "file identifier"� schema�xe "schema"�

There shall not be more than one descriptor in a directory�xe "directory"� with the same File Identifier.

The value of the File Link Count field in a File Entry�xe "File Entry"� shall not exceed 8.

No File Entries representing symbolic links shall be recorded.

The maximum length of a resolved pathname�xe "pathname:resolved"��xe "pathname"� (� ref part_File �4�/� ref FResolved_Pathname \n �8.7.1�) shall not exceed 64.

Note �SEQ Note *MERGEFORMAT�51�

For many systems, there are certain file identifier�xe "file identifier"�s which will cause problems during interchange�xe "interchange"�. For maximum interchange, the following file identifiers should not be used

AUX CLOCK$ COMn CON LPTm NUL PRN

where n is one of the four characters DIGITs ONE to FOUR and m is one of the three characters DIGITs ONE to THREE.

Note �SEQ Note *MERGEFORMAT�52�

The restriction on the maximum size of resolved pathname�xe "pathname:resolved"��xe "pathname"�s may be difficult to enforce incrementally. For example, changing a directory�xe "directory"� 's name requires, in principle, checking all pathnames including that directory. It may be simpler to check this restriction as a separate processing step prior to interchange�xe "interchange"�.

Level 2

At Level 2, the following restrictions�xe "restrictions"� shall apply:

The number in any Length of File Identifier and Length of Component Identifier field shall not exceed 14.

The maximum length of a resolved pathname�xe "pathname:resolved"��xe "pathname"� (� ref part_File �4�/� ref FResolved_Pathname \n �8.7.1�) shall not exceed 1 023.

The number in any File Link Count field in a File Entry shall not exceed 8.

Note �SEQ Note *MERGEFORMAT�53�

This interchange level provides compatibility with ISO/IEC 9945-1 file system restrictions.

Level 3

At Level 3, no restrictions shall apply.

��tc "Section 3 - Requirements for systems for file structure" \l 1 \n �

Section 3 - Requirements�xe "requirements"� for systems for file structure�xe "file structure"�

Requirements for the description of systems

Part � ref part_File �4� specifies that certain information shall be communicated between a user and an implementation. Each implementation that conforms to Part � ref part_File �4� shall have a description that identifies the means by which the user may supply or obtain such information.

Note �SEQ Note *MERGEFORMAT�54�

The specifics of the description and the means referred to above will vary from implementation to implementation. For example, an implementation might support two interfaces: a preferred, convenient interface which might vet user input�xe "input"�, and a deprecated low level interface which allows any input specified by Part � ref part_File �4�.

Requirements for an originating system

�xe "requirements"��xe "system:originating"�

General

The implementation shall be capable of recording a set of files, and all descriptors as specified in � ref part_File �4�/� ref FFile_Data_Structures \n �14�, on a volume set�xe "volume set"� according to one of the medium interchange�xe "interchange"� level�xe "medium interchange level"�s specified in � ref part_File �4�/� ref FLevels_of_Medium_Interchange \n �15�.

The implementation shall be capable of recording a list of character set�xe "character set"�s (see � ref part_General �1�/� ref Gcharset \n �7.2.11�) in which the bit for Character Set Type CS2�xe "character set:CS2"� shall be set to ONE.

If any information in the scope�xe "scope"� of a regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) is modified and the implementation cannot ensure that the information recorded within the scope of that regid still conforms to the agreement implied by the identification in that regid, then the implementation shall set the Dirty bit of the Flags�xe "flags"� field of that regid to ONE and should not alter the Identifier field of that regid (see � ref part_File �4�/� ref FAccess_User_Descriptors \n �17.2.3�).

If a domain is identified in a File Set�xe "file set"� Descriptor�xe "File Set Descriptor"� and the file set identified is modified and the implementation cannot ensure that the file set still conforms to the agreement implied by the domain identifier, then the implementation shall set the Dirty bit (see � ref part_General �1�/� ref Gregid \n �7.4�) to ONE and may set the Domain Identifier Field to all #00 bytes.

Mandatory access by user

Files

The implementation shall obtain from the user the information that constitutes the set of files to be recorded.

File set

The implementation shall allow the user to specify which file set�xe "file set"� to use on a logical volume�xe "logical volume"� and to identify the volumes on which the logical volume is recorded.

If the user specifies a logical volume�xe "logical volume"� without specifying which file set�xe "file set"� to use, then the implementation shall use the file set described by the File Set Descriptor�xe "File Set Descriptor"� having file set number 0.

Descriptors

The implementation shall allow the user to supply the information that is to be recorded in each of the following descriptor fields, and shall supply the information for a field if the user does not supply it.

File Set Descriptor:

Maximum Interchange Level

Maximum Character Set List

File Set Number

Logical Volume Identifier Character Set�xe "character set"�

Logical Volume Identifier

File Set�xe "file set"� Identifier

Copyright File Identifier�xe "copyright"�

File Identifier Descriptor:�xe "File Identifier Descriptor"�

File Version Number

File Characteristics

File Identifier

The implementation shall not modify the information that is recorded in each of the following descriptor fields except when directed to do so by the user:

Maximum Interchange Level field of a File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�

Maximum Character Set�xe "character set"� List field of a File Set�xe "file set"� Descriptor�xe "File Set Descriptor"�

Except as specified in � ref part_File �4�/� ref FRequirements_General \n �17.1�, Dirty or Protected bits of any regid�xe "regid"� (� ref part_General �1�/� ref Gregid \n �7.4�) field

Contiguous bit of the Flags�xe "flags"� field of a File Entry�xe "File Entry"�

Non-relocatable bit of the Flags�xe "flags"� field of a File Entry�xe "File Entry"�

Existence bit of the File Characteristics field of a directory�xe "directory"� descriptor�xe "directory:descriptor"�

Optional access by user

If the implementation permits the user to supply the information that is to be recorded in any of the following descriptor fields, the implementation shall record such information as supplied by the user, and shall supply the information for a field if the user does not supply it.

File Set Descriptor:

Character Set List

File Set Character Set

Abstract File Identifier

Domain Identifier

File Entry:

Uid

Gid

Permissions

Record Format

Record Display Attributes

Record Length

Information Length

Access Date and Time

Modification Date and Time

Attribute Date and Time

Checkpoint

Extended Attribute�xe "extended attribute"� Descriptor:

Attribute Type�xe "attribute type"�

Attribute Subtype�xe "attribute subtype"�

Attribute Information

Records

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to � ref part_File �4�/� ref FRecord_Format \n �14.9.7�, the implementation shall obtain from the user the length of each record�xe "record"� in the file and the bytes constituting the data space�xe "data space"� of the file.

File types

If the implementation allows the user to specify that a file is to be interpreted as (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�) either a block special device�xe "block special device"��xe "device"� file as specified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1, or a character special device�xe "character special device"� file as specified by ISO/IEC 9945-1, or a FIFO�xe "FIFO"� file as specified by ISO/IEC 9945-1, or according to the C_ISSOCK file type�xe "file type"� identified by ISO/IEC 9945-1, the implementation shall record the attributes supplied by the user for that file and shall not record those attributes if the user does not supply them.

Permissions

The implementation should provide access to files and directories�xe "directory"� according to either, or both, of � ref part_File �4�/� ref FPermissions \n �14.9.5� or � ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�. However, as the implementation’s security scheme might be incompatible with these schemes, the implementation is not required to provide such access.

Restrictions

Multivolume volume sets

�xe "volume set"�The implementation shall not be required to record information on the volumes of a volume set�xe "volume set"� that have been assigned a sequence number n, where 1 (n < m, after any information has been recorded on the volume of the volume set that has been assigned sequence number m.

The implementation shall not be required to record information on the volume of a volume set�xe "volume set"� that has been assigned sequence number m+1 if there is sufficient space to record the information on the volume that has been assigned a sequence number n, where 1 (n (m.

Record length

�xe "record"�The implementation may impose a limit on the length of a record that may be recorded in a file. The implementation is not required to record any byte beyond the first m bytes of a record, where m is the value of the imposed limit. The value of m shall be not less than 2 048.

File Times

If the File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"� is not recorded for a file, then the implementation shall behave as if the File Times Extended Attribute were recorded with the File Time Existence field having a value of 0.

Information Times

If the Information Times Extended Attribute�xe "Extended Attribute:Information Times"��xe "extended attribute"� is not recorded for a file, then the implementation shall behave as if the Information Times Extended Attribute were recorded with the Information Time Existence field having a value of 0.

Alternate Permissions

The implementation may ignore bits 0-3 of the Permissions field of the Alternate Permissions (� ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�) extended attribute.

If requested by the owner of the file, the implementation may ignore bits 4-7 of the Alternate Permissions�xe "Extended Attribute:Alternate Permissions"� (� ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�) extended attribute�xe "extended attribute"�.

Requirements for a receiving system

�xe "requirements"��xe "system:receiving"�

General

The implementation shall be capable of reading the files, and the recorded descriptors as specified in � ref part_File �4�/� ref FFile_Data_Structures \n �14�, from a volume set�xe "volume set"� that has been recorded according to one of the medium interchange�xe "interchange"� level�xe "medium interchange level"�s specified in � ref part_File �4�/� ref FLevels_of_Medium_Interchange \n �15�.

The implementation shall be capable of interpreting all descriptors recorded with a Descriptor Version of 2 or 3 (see � ref part_File �4�/� ref FDescriptor_Version \n �7.2.2�).

If the user specifies a logical volume�xe "logical volume"� without specifying which file set�xe "file set"� to use, then the implementation shall use the file set described by the File Set Descriptor�xe "File Set Descriptor"� having file set number 0.

Files

The implementation shall make available to the user the information that constitutes the recorded files.

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to � ref part_File �4�/� ref FRecord_Format \n �14.9.7�, the implementation shall make available to the user the length of each record�xe "record"� in the file and the display attributes�xe "display attributes"� of the file.

File types

If the implementation allows the user to specify that a file is to be interpreted as (see � ref part_File �4�/� ref FFile_Type \n �14.6.6�) either a block special device�xe "block special device"��xe "device"� file as specified by ISO/IEC 9945�xe "ISO/IEC 9945"�-1, or a character special device�xe "character special device"� file as specified by ISO/IEC 9945-1, or a FIFO�xe "FIFO"� file as specified by ISO/IEC 9945-1, or according to the C_ISSOCK file type�xe "file type"� identified by ISO/IEC 9945-1, the implementation shall make available to the user the attributes of that file.

Permissions

The implementation should provide access to files and directories�xe "directory"� according to either, or both, of � ref part_File �4�/� ref FPermissions \n �14.9.5� or � ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�. However, as the implementation’s security scheme might be incompatible with these schemes, the implementation is not required to provide such access.

Mandatory access by user

The implementation shall allow the user to supply information sufficient to enable the implementation to locate the files required by the user, and to locate the volumes on which these files are recorded.

Descriptors

The implementation shall allow the user to access the information that is recorded in each of the following descriptor fields.

File Set Descriptor:

Maximum Interchange Level

Maximum Character Set List

File Set Identifier

Copyright File Identifier

Domain Identifier

File Identifier Descriptor:

File Version Number

File Characteristics

File Identifier

Restrictions

Record length

�xe "record"�The implementation may impose a limit on the length of a record to be made available to the user. The implementation is not required to make available to the user any byte beyond the first m bytes of a record, where m is the value of the imposed limit. The value of m shall be not less than 2 048.

File Times

If the File Times Extended Attribute�xe "Extended Attribute:File Times"��xe "extended attribute"� is not recorded for a file, then the implementation shall behave as if the File Times Extended Attribute were recorded with the File Time Existence field having a value of 0.

Information Times

If the Information Times Extended Attribute�xe "Extended Attribute:Information Times"��xe "extended attribute"� is not recorded for a file, then the implementation shall behave as if the Information Times Extended Attribute were recorded with the Information Time Existence field having a value of 0.

Alternate Permissions

�xe "Extended Attribute:Alternate Permissions"�The implementation may ignore bits 0-3 of the Permissions field of the Alternate Permissions (� ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�) extended attribute.

If requested by the owner of the file, the implementation may ignore bits 4-7 of the Alternate Permissions (� ref part_File �4�/� ref FAlternate_Permissions \n �14.10.4�) extended attribute.

�Annex � seq Annex * Alphabetic \r 1 �A�

(normative)

ICB Strategies

�tc "Annex � seq Annex \c * Alphabetic �A� - ICB Strategies" \l 1 �

� seq Annex \c * Alphabetic �A�.� SEQ hl1 * MERGEFORMAT �1�	General removefromTOC

This annex specifies four strategies for constructing ICB�xe "ICB"� hierarchies (see � ref part_File �4�/� ref FICB_hierarchy \n �8.10.1�).

� seq Annex \c * Alphabetic �A�.� SEQ hl1 * MERGEFORMAT �2�	Strategy 1 removefromTOC

This clause specifies a strategy where each ICB�xe "ICB"� of an ICB hierarchy is an extent�xe "extent"� of k entries, where k is the value of the Maximum Number of Entries field of the ICB Tag�xe "ICB:Tag"� field.

The root ICB�xe "ICB:root"��xe "ICB"� of the ICB hierarchy shall contain d direct entries, where d is recorded as a Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�) in the Strategy Parameter field of the ICB Tag�xe "ICB:Tag"� field (see � ref part_File �4�/� ref FICB_Flags \n �14.6.8�), and i = k (d indirect entries�xe "indirect entry"�. The first indirect entry shall specify the address, referred to as a type I1 address, of an extent�xe "extent"� of k direct entries. For n > 1, the nth indirect entry shall specify the address, referred to as a type In address of an extent of k indirect entries, each of which specifies a type In(1 address.

Note � seq Annex \c * Alphabetic �A�.�SEQ Note \r 1 *MERGEFORMAT�1�

An example of an ICB�xe "ICB"� hierarchy recorded using this strategy is shown in figure � ref part_File �4�/� REF FStrategy_1_Example * MERGEFORMAT �A.1�.

The maximum number of direct entries that can be recorded in an ICB�xe "ICB"� hierarchy specified by the strategy of this clause, denoted by nde(d, i), shall be

nde(d, i)	= d + k + k2 +...+ ki

	= �EMBED Equation.2���

Note � seq Annex \c * Alphabetic �A�.�SEQ Note *MERGEFORMAT�2�

This strategy works well over a large range of ICB�xe "ICB"� hierarchy sizes but works best when there is a single indirect entry�xe "indirect entry"� in the root ICB�xe "ICB:root"�, that is, where the actual number of recorded direct entries in an ICB hierarchy is not greater than d+k.

��

Figure � seq Annex \c * Alphabetic �A�.� SEQ SEQ_FIGURE_FileStructure_A �1� - Strategy 1 Example

�

Figure � seq Annex \c * Alphabetic �A�.� SEQ SEQ_FIGURE_FileStructure_A �2� - Strategy 2 Example

� seq Annex \c * Alphabetic �A�.� SEQ hl1 * MERGEFORMAT �3�	Strategy 2 removefromTOC

This clause specifies a strategy which constructs a list of ICB�xe "ICB"� hierarchies based on the ICB hierarchies constructed with strategy 1.

The root ICB�xe "ICB:root"��xe "ICB"� of the ICB hierarchy shall be a master ICB.

A master ICB�xe "ICB"� shall contain d direct entries, where d is recorded as a Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�) in the Strategy Parameter field of the ICB Tag�xe "ICB:Tag"� field (see � ref part_File �4�/� ref FICB_Flags \n �14.6.8�), and i = k (d indirect entries�xe "indirect entry"�. The first indirect entry shall specify the address, referred to as a type I1 address, of an extent�xe "extent"� of k direct entries. For 1 < n < i, the nth indirect entry shall specify the address, referred to as a type In address of an extent of k indirect entries, each of which specifies a type In(1 address. The ith indirect entry shall specify another master ICB. All master ICBs in the ICB hierarchy shall specify the same values for k and d.

Note � seq Annex \c * Alphabetic �A�.�SEQ Note *MERGEFORMAT�3�

An example of an ICB�xe "ICB"� hierarchy recorded using this strategy is shown in figure � ref part_File �4�/� REF FStrategy_2_Example * MERGEFORMAT �A.2�.

Note � seq Annex \c * Alphabetic �A�.�SEQ Note *MERGEFORMAT�4�

The number of direct entries that can be recorded in an ICB�xe "ICB"� hierarchy specified by the strategy of this clause is limited only by the size of the logical volume�xe "logical volume"� it is recorded on.

� seq Annex \c * Alphabetic �A�.� SEQ hl1 * MERGEFORMAT �4�	Strategy 3 removefromTOC

This clause specifies a strategy where each ICB�xe "ICB"� of the ICB hierarchy is an extent�xe "extent"� of k entries, where k is the value of the Maximum Number of Entries field of the ICB Tag�xe "ICB:Tag"� field, and there are h levels in the ICB hierarchy. The value of h shall be recorded as a Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�) in the Strategy Parameter field of the ICB Tag field (see icbtag (� ref part_File �4�/� ref FICB_tag \n �14.6�)) for each ICB of the ICB hierarchy. Each ICB at level h of the ICB hierarchy shall consist of k direct entries. For 1 (n < h, each ICB at level n consist of k indirect entries�xe "indirect entry"�, each of which specifies the address, referred to as In, of an ICB at level n + 1 of the ICB hierarchy.

The maximum number of direct entries that can be recorded in an ICB�xe "ICB"� hierarchy specified by the strategy of this clause, denoted by nde(k, h), shall be

nde(k, h) = kh

Note � seq Annex \c * Alphabetic �A�.�SEQ Note *MERGEFORMAT�5�

This strategy builds an ICB�xe "ICB"� a hierarchy that is a balanced tree. That is, all the entries at the bottom are direct entries and all the others are indirect entries�xe "indirect entry"�. An example of an ICB hierarchy recorded using this strategy is shown in figure � ref part_File �4�/� REF FStrategy_3_Example * MERGEFORMAT �A.3�.

This strategy gives more (total) direct entries in a given ICB�xe "ICB"� hierarchy than strategy 1 for a given d+i. However, the access time is constant and larger than the average access time for strategy 1.

� seq Annex \c * Alphabetic �A�.� SEQ hl1 * MERGEFORMAT �5�	Strategy 4 removefromTOC

For this strategy, the ICB�xe "ICB"� hierarchy shall consist of a single ICB having one direct entry�xe "direct entry"�.

Note � seq Annex \c * Alphabetic �A�.�SEQ Note *MERGEFORMAT�6�

This strategy works well for rewritable media. The direct entry would be overwritten each time a new direct entry is required for the file described by the ICB.

�

Figure � seq Annex \c * Alphabetic �A�.� SEQ SEQ_FIGURE_FileStructure_A �3� - Strategy 3 Example

�Annex � seq Annex * Alphabetic �B�

(informative)

Changes from ECMA 167/2 to this standard

� tc “Annex � seq Annex \c * Alphabetic�B�: Changes from ECMA 167/2” \l 1 �

NSR descriptors were updated from NSR02 to NSR03.

Descriptor Tag version was updated from 2 to 3. A value of two is allowed for legacy media.

File streams were added. File streams allow multiple sets of data to be associated with a single file identifier. Descriptive sections and supporting structures were added.

A new File Entry, the Extended File Entry, was introduced to allow for file streams and for an embedded creation time.

The specification for the Parent ICB location was expanded to include strategy type 4.

The definition of the Extent Length was clarified.

�Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange

Part � seq Part �5�: Record structure

� tc � ref part_Record_long * mergeformat �Part 5: Record structure� \n�

�� tc “Section 1 - General” \n �

Section 1 - General

Scope

�xe "scope"�Part � ref part_Record �5� specifies a format and associated system requirements�xe "requirements"� for record�xe "record"� structure by specifying:

record�xe "record"� structures intended for use when the information constituting a file is required to be interpreted as a set of records;

the attributes of the records of a file;

requirements�xe "requirements"� for the processes which are provided within information processing systems, to enable information to be interchanged between different systems; for this purpose it specifies the functions to be provided within systems which are intended to originate or receive media which conform to Part � ref part_Record �5�.

Parts references

See � ref part_General �1�/� ref GParts_Reference \n �2�.

Part interface

This clause specifies the interface of Part � ref part_Record �5� to other standards or Parts.

Input

�xe "input"�Part � ref part_Record �5� requires the specification of the following by another standard or Part.

Data space�xe "data space"� of a file (see � ref part_Record �5�/� ref RData_Space \n �6.1�).

If the records of the file are to be interpreted according to � ref part_Record �5�/� ref RStream_Print \n �9.2.4�, � ref part_Record �5�/� ref RStream_LF \n �9.2.5�, � ref part_Record �5�/� ref RStream_CR \n �9.2.6�, � ref part_Record �5�/� ref RStream_CRLF \n �9.2.7� or � ref part_Record �5�/� ref RStream_LFCR \n �9.2.8� or are intended to be displayed according to � ref part_Record �5�/� ref RDisplay \n �9.3�, specification of how characters, including the LINE FEED, VERTICAL TABULATION�xe "character:VERTICAL TABULATION"�, FORM FEED, and CARRIAGE RETURN�xe "character:CARRIAGE RETURN"� characters, are encoded within the data space�xe "data space"� of the file.

Output

�xe "output"�Part � ref part_Record �5� specifies the following which may be used by other standards or Parts.

Identification and specification of record�xe "record"� types (see � ref part_Record �5�/� ref RRecord_Type \n �9.2�).

Identification and specification of record�xe "record"� display attributes�xe "record:display attributes"��xe "display attributes"� (see � ref part_Record �5�/� ref RDisplay \n �9.3�).

Reference

�xe "references"�ISO/IEC 1539:1991, Information technology - Programming languages - FORTRAN

Conformance

See � ref part_General �1�/� ref GConformance \n �3�.�xe "conformance"�

Definitions

In addition to the definitions of Part � ref part_General �1� (see � ref part_General �1�/� ref GDefinitions \n �5�), the following definition applies for Part � ref part_Record �5�.

Data space of a file

�xe "data space"�The set of bytes specified for a file shall be the data space of the file.

The bytes of the set shall be numbered with consecutive integers assigned in an ascending sequence. The numbering shall start from 0 which shall be assigned to the first, if any, byte of the file.

Notation

The notation�xe "notation"� of Part � ref part_General �1� (see � ref part_General �1�/� ref GNotation \n �6�) applies to Part � ref part_Record �5�.

Basic types

In addition to the basic types of Part � ref part_General �1� (see � ref part_General �1�/� ref GBasic_Types \n �7�), the following basic type applies to Part � ref part_Record �5�.

16-bit unsigned numerical values (MSB)

�xe "numerical value"��xe "MSB"�A Uint16MSB value, represented by the hexadecimal representation #wxyz, shall be recorded in a two-byte field as #wx #yz.

Note �SEQ Note \r 1 *MERGEFORMAT�1�

For example, the decimal number 4 660 has #1234 as its hexadecimal representation and shall be recorded as #12 #34.

��tc "Section 2 - Requirements for the medium for record structure" \l 1 \n �

Section 2 - Requirements�xe "requirements"� for the medium for record�xe "record"� structure

Record structure

�xe "record"�The information in a file may be organised as a set of records (see � ref part_General �1�/� ref GRecord \n �5.8�) according to Part � ref part_Record �5�. The length of a record shall be the number of bytes in the record. A record shall be recorded in a container which shall be recorded in the data space�xe "data space"� of a file. This container shall be referred to as a Measured Data Unit (MDU�xe "MDU"�) (see � ref part_Record �5�/� ref RRelationship_to_a_File \n �9.1�).

Relationship to a file

Each MDU�xe "MDU"� shall comprise a set of successive bytes of the data space�xe "data space"� of the file (see � ref part_Record �5�/� ref RData_Space \n �6.1�). The first or only MDU shall begin at the first byte of the data space of the file. Each successive MDU shall begin at the byte of the data space of the file immediately following the last byte of the preceding MDU.

If there are no bytes in the data space�xe "data space"� of the file, then no MDU�xe "MDU"� shall be considered to have been recorded in the file.

Record type

A record�xe "record"� of a file recorded according to Part � ref part_Record �5� shall be one of the following types:

padded fixed-length (� ref part_Record �5�/� ref RPadded_fixed_length_record \n �9.2.1�)

fixed-length (� ref part_Record �5�/� ref RFixed_length_record \n �9.2.2�)

variable-length-8 (� ref part_Record �5�/� ref RVariable_Length_8 \n �9.2.3.1�)

variable-length-16 (� ref part_Record �5�/� ref RVariable_Length_16 \n �9.2.3.2�)

variable-length-16-MSB�xe "MSB"� (� ref part_Record �5�/� ref RVariable_Length_16_MSB \n �9.2.3.3�)

variable-length-32 (� ref part_Record �5�/� ref RVariable_Length_32 \n �9.2.3.4�)

stream-print (� ref part_Record �5�/� ref RStream_Print \n �9.2.4�)

stream-LF (� ref part_Record �5�/� ref RStream_LF \n �9.2.5�)

stream-CR (� ref part_Record �5�/� ref RStream_CR \n �9.2.6�)

stream-CRLF (� ref part_Record �5�/� ref RStream_CRLF \n �9.2.7�)

stream-LFCR (� ref part_Record �5�/� ref RStream_LFCR \n �9.2.8�)

All records in a file shall be of the same type.

Padded fixed-length records

A padded fixed-length record�xe "record"� shall be a record contained in a file that is assigned to contain records that shall have the same length. The minimum assigned length of a padded fixed-length record shall be 1.

An MDU�xe "MDU"� containing a padded fixed-length record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/� REF RPadded_fixed_length_record_schema * MERGEFORMAT �1�.

[MDU�xe "MDU"�]{

	<record�xe "record"�>

	<#00 byte> 0+1

}

Figure � SEQ SEQ_FIGURE_RecordStructure �1� - Padded fixed-length record�xe "record"� schema�xe "schema"�

The #00 byte shall be recorded only if necessary to give the MDU�xe "MDU"� an even length.

Fixed-length records

A fixed-length record�xe "record"� shall be a record contained in a file that is assigned to contain records that shall have the same length. The minimum assigned length of a fixed-length record shall be 1.

An MDU�xe "MDU"� containing a fixed-length record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/� REF RFixed_length_record_schema * MERGEFORMAT �2�.

[MDU�xe "MDU"�]{

	<record�xe "record"�>

}

Figure � SEQ SEQ_FIGURE_RecordStructure �2� - Fixed-length record�xe "record"� schema�xe "schema"�

Variable-length records

A variable-length record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A variable-length record�xe "record"� shall be one of the following types:

variable-length-8 (� ref part_Record �5�/� ref RVariable_Length_8 \n �9.2.3.1�)

variable-length-16 (� ref part_Record �5�/� ref RVariable_Length_16 \n �9.2.3.2�)

variable-length-16-MSB�xe "MSB"� (� ref part_Record �5�/� ref RVariable_Length_16_MSB \n �9.2.3.3�)

variable-length-32 (� ref part_Record �5�/� ref RVariable_Length_32 \n �9.2.3.4�)

A maximum record�xe "record"� length shall be assigned for a file. The length of any record in the file shall not exceed this value. The minimum length of a variable-length record shall be 0.

The length of a variable-length record�xe "record"� shall be recorded in a Record Control Word (RCW�xe "RCW"�). The length of a record does not include the size of the RCW. The interpretation of the value of the RCW shall be as given in figure � ref part_Record �5�/3, where n denotes the number of bits in the RCW of a record for the file:

RCW�xe "RCW"� �Interpretation��2n (1�The RCW�xe "RCW"� is the final RCW of the logical block�xe "logical block"� in which the RCW is recorded.��0 to 2n (2�The RCW�xe "RCW"� specifies the length of the record�xe "record"�.��Figure � SEQ SEQ_FIGURE_RecordStructure �3� - RCW�xe "RCW"� interpretation

Note �SEQ Note *MERGEFORMAT�2�

The length of the RCW�xe "RCW"� is not included in the number recorded in the RCW.

Variable-length-8

An MDU�xe "MDU"� containing a variable-length-8 record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/4 where the RCW�xe "RCW"� is recorded as an Uint8 (� ref part_General �1�/� ref GUInt8 \n �7.1.1�).

[MDU�xe "MDU"�]{

	<RCW�xe "RCW"�>

	{

		<record�xe "record"�>

	} 0+1

}

Figure � SEQ SEQ_FIGURE_RecordStructure �4� - Variable-length-8 record�xe "record"� schema�xe "schema"�

Variable-length-16

An MDU�xe "MDU"� containing a variable-length-16 record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/5 where the RCW�xe "RCW"� is recorded as an Uint16 (� ref part_General �1�/� ref GUInt16 \n �7.1.3�).

[MDU�xe "MDU"�]{

	<RCW�xe "RCW"�>

	{

		<record�xe "record"�>

		<#00 byte> 0+1

	} 0+1

}

Figure � SEQ SEQ_FIGURE_RecordStructure �5� - Variable-length-16 record�xe "record"� schema�xe "schema"�

The #00 byte shall be recorded only if necessary to give the MDU�xe "MDU"� an even length.

Variable-length-16-MSB�xe "MSB"�

An MDU�xe "MDU"� containing a variable-length-16-MSB�xe "MSB"� record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/6 where the RCW�xe "RCW"� is recorded as an Uint16MSB (� ref part_Record �5�/� ref RUInt16MSB \n �8.1�).

[MDU�xe "MDU"�]{

	<RCW�xe "RCW"�>

	{

		<record�xe "record"�>

		<#00 byte> 0+1

	} 0+1

}

Figure � SEQ SEQ_FIGURE_RecordStructure �6� - Variable-length-16-MSB�xe "MSB"� record�xe "record"� schema�xe "schema"�

The #00 byte shall be recorded only if necessary to give the MDU�xe "MDU"� an even length.

Note �SEQ Note *MERGEFORMAT�3�

The use of variable-length-16-MSB�xe "MSB"� records is included only for compatibility with ECMA-119�xe "ISO 9660"�. It is recommended that variable-length-16 records be used instead.

Variable-length-32

An MDU�xe "MDU"� containing a variable-length-32 record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/7 where the RCW�xe "RCW"� is recorded as an Uint32 (� ref part_General �1�/� ref GUInt32 \n �7.1.5�).

[MDU�xe "MDU"�]{

	<RCW�xe "RCW"�>

	{

		<record�xe "record"�>

	} 0+1

}

Figure � SEQ SEQ_FIGURE_RecordStructure �7� - Variable-length-32 record�xe "record"� schema�xe "schema"�

Stream-print records

A stream-print record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A maximum record�xe "record"� length shall be assigned for a file assigned to contain stream-print records. The length of any record in the file shall not exceed this value. The minimum length of a stream-print record shall be 0.

The first byte of a stream-print record�xe "record"� shall not be a #00 byte.

An MDU�xe "MDU"� containing a stream-print record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/8.

[MDU�xe "MDU"�]{

	<#00 byte> 0+

	{

		<record�xe "record"�> <LINE FEED�xe "character:LINE FEED"� character>

		|	<record�xe "record"�> <VERTICAL TABULATION�xe "character:VERTICAL TABULATION"� character>

		|	<record�xe "record"�> <FORM FEED character>

		|	<record�xe "record"�> <CARRIAGE RETURN�xe "character:CARRIAGE RETURN"� character> <LINE FEED�xe "character:LINE FEED"� character>

	}

}

Figure � SEQ SEQ_FIGURE_RecordStructure �8� - Stream-print record�xe "record"� schema�xe "schema"�

Stream-LF records

A stream-LF record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A maximum record�xe "record"� length shall be assigned for a file assigned to contain stream-LF records. The length of any record in the file shall not exceed this value. The minimum length of a stream-LF record shall be 0.

An MDU�xe "MDU"� containing a stream-LF record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/9.

[MDU�xe "MDU"�]{

	<record�xe "record"�> <LINE FEED�xe "character:LINE FEED"� character>

}

Figure � SEQ SEQ_FIGURE_RecordStructure �9� - Stream-LF record�xe "record"� schema�xe "schema"�

Stream-CR records

A stream-CR record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A maximum record�xe "record"� length shall be assigned for a file assigned to contain stream-CR records. The length of any record in the file shall not exceed this value. The minimum length of a stream-CR record shall be 0.

An MDU�xe "MDU"� containing a stream-CR record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/10.

[MDU�xe "MDU"�]{

	<record�xe "record"�> <CARRIAGE RETURN�xe "character:CARRIAGE RETURN"� character>

}

Figure � SEQ SEQ_FIGURE_RecordStructure �10� - Stream-CR record�xe "record"� schema�xe "schema"�

Stream-CRLF records

A stream-CRLF record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A maximum record�xe "record"� length shall be assigned for a file assigned to contain stream-CRLF records. The length of any record in the file shall not exceed this value. The minimum length of a stream-CRLF record shall be 0.

An MDU�xe "MDU"� containing a stream-CRLF record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/11.

[MDU]{

	<record> <CARRIAGE RETURN character> <LINE FEED character>

}

Figure � SEQ SEQ_FIGURE_RecordStructure �11� - Stream-CRLF record schema

Stream-LFCR records

A stream-LFCR record�xe "record"� shall be a record contained in a file that is assigned to contain records that may have different lengths.

A maximum record�xe "record"� length shall be assigned for a file assigned to contain stream-LFCR records. The length of any record in the file shall not exceed this value. The minimum length of a stream-LFCR record shall be 0.

An MDU�xe "MDU"� containing a stream-LFCR record�xe "record"� shall be recorded according to the schema�xe "schema"� shown in figure � ref part_Record �5�/12.

[MDU�xe "MDU"�]{

	<record�xe "record"�> <LINE FEED�xe "character:LINE FEED"� character> <CARRIAGE RETURN�xe "character:CARRIAGE RETURN"� character>

}

Figure � SEQ SEQ_FIGURE_RecordStructure �12� - Stream-LFCR record�xe "record"� schema�xe "schema"�

Record display attributes

�xe "record:display attributes"��xe "display attributes"�This clause specifies the processing of the records in a file when they are displayed on a character-imaging device�xe "device"�. If the file is not recorded with any of the record�xe "record"� types (see � ref part_Record �5�/� ref RRecord_Type \n �9.2�) specified in Part � ref part_Record �5�, then the records of the file need not be processed according to the record display attributes�xe "record:display attributes"��xe "display attributes"� specified by this clause.

A file recorded with records according to Part � ref part_Record �5� shall be assigned one of the following types of record�xe "record"� display attributes�xe "record:display attributes"��xe "display attributes"�

LF-CR (� ref part_Record �5�/� ref RDisplay_LF_CR \n �9.3.1�)

first byte position (� ref part_Record �5�/� ref RDisplay_First_Byte \n �9.3.2�)

implied (� ref part_Record �5�/� ref RDisplay_Implied \n �9.3.3�)

LF-CR display attribute

When displayed on a character-imaging device�xe "device"�, each record�xe "record"� of the file shall be preceded by a LINE FEED�xe "character:LINE FEED"� character and followed by a CARRIAGE RETURN�xe "character:CARRIAGE RETURN"� character.

First byte position display attribute

When displayed on a character-imaging device�xe "device"�, the first byte of each record of the file shall be interpreted as specified in ISO 1539 for vertical spacing.

Implied display attribute

When displayed on a character-imaging device, each record of the file shall be interpreted as containing the necessary control information for the imaging device.

��tc "Section 3 - Requirements for systems for record structure" \l 1 \n �

Section 3 - Requirements�xe "requirements"� for systems for record�xe "record"� structure

Requirements for the description of systems

�xe "requirements"�Part � ref part_Record �5� specifies that certain information shall be communicated between a user and an implementation. Each implementation that conforms to Part � ref part_Record �5� shall have a description that identifies the means by which the user may supply or obtain such information.

Note �SEQ Note *MERGEFORMAT�4�

The specifics of the description and the means referred to above will vary from implementation to implementation. For example, an implementation might support two interfaces: a preferred, convenient interface which might vet user input�xe "input"�, and a deprecated low level interface which allows any input specified by Part � ref part_Record �5�.

Requirements for an originating system

�xe "requirements"��xe "system:originating"�

General

Files

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to a record�xe "record"� type specified in � ref part_Record �5�/� ref RRecord_Type \n �9.2�, the implementation shall obtain from the user the length of each record in the file.

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to a record�xe "record"� display attribute specified in � ref part_Record �5�/� ref RDisplay \n �9.3�, the implementation shall obtain from the user the record display attribute for the file.

Record length

�xe "record"�The implementation may impose a limit on the length of a record�xe "record"� that may be recorded in a file. The implementation is not required to record any byte beyond the first m bytes of a record, where m is the value of the imposed limit. The value of m shall be not less than 2 048.

Requirements for a receiving system

�xe "requirements"��xe "system:receiving"�

General

Files

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to a record�xe "record"� type specified in � ref part_Record �5�/� ref RRecord_Type \n �9.2�, the implementation shall make available to the user the length of each record in the file.

If the implementation allows the user to specify that the information constituting a file is to be interpreted according to a record�xe "record"� display attribute specified in � ref part_Record �5�/� ref RDisplay \n �9.3�, the implementation shall make available to the user the record display attribute for the file.

Record length

�xe "record"�The implementation may impose a limit on the length of a record�xe "record"� to be made available to the user. The implementation is not required to make available to the user any byte beyond the first m bytes of a record, where m is the value of the imposed limit. The value of m shall be not less than 2 048.

��� INDEX \d "/" \e “: ” \s "Part" * MERGEFORMAT �abstract: 3/12, 3/13, 3/28, 3/29, 4/7, 4/17

alias: 4/7, 4/8, 4/49

alignment: 4/34

Allocation Descriptor: 3/22, 3/23, 4/9, 4/10, 4/15, 4/23, 4/26, 4/28, 4/32, 4/44, 4/46, 4/47, 4/50

Extended: 4/15, 4/26, 4/47

Long: 4/26, 4/46

Short: 4/26

Allocation Extent Descriptor: 4/4, 4/15, 4/23

anchor point: 3/7, 3/8

Anchor Volume Descriptor Pointer: 3/4, 3/7, 3/8, 3/9, 3/14, 3/25

application: 1/2, 1/3, 1/4, 3/12, 3/28, 4/13, 4/33, 4/42, 4/43

identifier: 1/4, 3/12, 3/28, 4/13, 4/43

use: 4/13, 4/42, 4/43

architecture: 2/6, 2/7, 2/8

archive: 4/26

Attribute Header Descriptor: 4/4, 4/12, 4/13, 4/32, 4/33

attribute subtype: 4/12, 4/33, 4/34, 4/35, 4/38, 4/39, 4/41, 4/42, 4/43, 4/56

attribute type: 4/12, 4/13, 4/33, 4/34, 4/35, 4/38, 4/39, 4/41, 4/42, 4/43, 4/56

basic type: 1/6, 2/2, 3/2, 4/3

Beginning Extended Area Descriptor: 2/5, 2/9

bit field: 1/4

bit position: 1/4, 4/39, 4/40

Bitmap Descriptor: 4/4, 4/16, 4/44

block special device: 4/25, 4/56, 4/57

boot block: 1/1, 2/1, 2/3, 2/9

Boot Descriptor: 2/6, 2/7, 2/8

boot program: 2/8

canonical form: 3/8

character

CARRIAGE RETURN: 5/1, 5/6, 5/7

code extension: 1/10, 4/10, 4/52

coded: 1/2, 1/8, 1/13, 4/34, 4/35

graphic: 1/8, 1/9, 1/10

LINE FEED: 5/6, 5/7

REVERSE SOLIDUS: 4/52

string: 1/5, 1/7

VERTICAL TABULATION: 5/1, 5/6

character set: 1/2, 1/7, 1/8, 1/9, 1/10, 1/13, 3/7, 3/9, 3/10, 3/12, 3/13, 3/19, 3/27, 3/28, 3/29, 4/8, 4/9, 4/10, 4/13, 4/17, 4/18, 4/34, 4/35, 4/54, 4/55

CS0: 1/8

CS1: 1/8, 1/9

CS2: 1/8, 1/9, 3/27, 4/54

CS3: 1/8, 1/9

CS4: 1/8, 1/9

CS5: 1/8, 1/9

CS6: 1/8, 1/10

CS7: 1/8, 1/10

CS8: 1/8, 1/10

character special device: 4/25, 4/56, 4/57

charspec: 1/7, 1/8, 3/12, 3/13, 3/19, 4/8, 4/17

compression: 4/48

conformance: 1/1, 2/1, 3/2, 4/2, 5/1

copyright: 3/12, 3/13, 3/28, 3/29, 4/7, 4/17, 4/55

CRC: 3/3, 3/4, 3/5, 4/4, 4/5

current file: 4/32, 4/34, 4/39, 4/40

data space: 4/2, 4/10, 4/26, 4/56, 5/1, 5/3

Descriptor Tag: 3/12, 3/15, 3/16, 3/17, 3/19, 3/22, 3/23, 3/24, 4/3, 4/17, 4/19, 4/21, 4/23, 4/27, 4/28, 4/33, 4/44, 4/45, 4/50

device: 4/13, 4/25, 4/31, 4/40, 4/41, 4/56, 4/57, 5/7

direct entry: 4/11, 4/23, 4/24, 4/45, 4/61

directory: 4/2, 4/6, 4/7, 4/8, 4/11, 4/16, 4/17, 4/19, 4/22, 4/25, 4/26, 4/30, 4/32, 4/48, 4/49, 4/52, 4/53, 4/55, 4/56, 4/57

descriptor: 4/7, 4/8, 4/32, 4/55

hierarchy: 4/2, 4/7, 4/8, 4/19, 4/30, 4/49

hierarchy size restrictions: 4/8

root: 4/7, 4/19, 4/49

disaster recovery: 3/4, 3/14, 4/5

display attributes: 4/30, 4/57, 5/1, 5/7

escape sequences: 1/9, 1/10, 4/35

extended attribute: 4/4, 4/8, 4/9, 4/10, 4/12, 4/13, 4/25, 4/28, 4/31, 4/32, 4/33, 4/34, 4/35, 4/36, 4/38, 4/39, 4/40, 4/41, 4/42, 4/43, 4/50, 4/56, 4/57, 4/58

Alternate Permissions: 4/13, 4/35, 4/57, 4/58

Application Use: 4/42, 4/43

Character Set Information: 4/8, 4/34

Device Specification: 4/40, 4/41

file: 4/32

File Times: 4/31, 4/38, 4/56, 4/58

format: 4/38, 4/39, 4/41, 4/42, 4/43

Implementation Use: 4/41, 4/42

Information Times: 4/39, 4/57, 4/58

Extended Attribute Header Descriptor: 4/4, 4/12, 4/13, 4/32, 4/33

extent: 2/1, 2/7, 2/8, 3/3, 3/7, 3/8, 3/10, 3/12, 3/13, 3/14, 3/15, 3/16, 3/19, 3/20, 3/22, 3/23, 3/24, 3/25, 3/29, 4/1, 4/6, 4/10, 4/11, 4/15, 4/16, 4/19, 4/20, 4/23, 4/26, 4/32, 4/44, 4/46, 4/47, 4/48, 4/59, 4/61

Extent Descriptor: 3/3, 4/4, 4/15, 4/23

FIFO: 4/25, 4/56, 4/57

file access: 4/29, 4/30, 4/35, 4/38

File Entry: 4/4, 4/8, 4/9, 4/10, 4/12, 4/14, 4/27, 4/28, 4/30, 4/31, 4/48, 4/50, 4/53, 4/55

file identifier: 4/52, 4/53

File Identifier Descriptor: 4/4, 4/7, 4/10, 4/20, 4/21, 4/22, 4/26, 4/30, 4/55

file set: 4/1, 4/2, 4/4, 4/6, 4/7, 4/8, 4/16, 4/17, 4/18, 4/19, 4/52, 4/54, 4/55, 4/57

File Set Descriptor: 4/1, 4/4, 4/6, 4/7, 4/8, 4/16, 4/17, 4/18, 4/19, 4/54, 4/55, 4/57

File Set Descriptor Sequence: 4/1, 4/6, 4/19

file structure: 1/1, 4/1, 4/6, 4/54

file system: 3/9, 4/15, 4/49

file type: 4/14, 4/23, 4/24, 4/25, 4/27, 4/28, 4/30, 4/44, 4/45, 4/56, 4/57

flags: 1/12, 2/7, 3/12, 3/14, 3/17, 3/27, 4/16, 4/23, 4/25, 4/44, 4/54, 4/55

freed space: 4/2, 4/7, 4/13, 4/14, 4/20

group ID: 4/28, 4/30, 4/35, 4/36, 4/37, 4/38

ICB: 1/1, 4/7, 4/11, 4/12, 4/14, 4/16, 4/17, 4/19, 4/21, 4/22, 4/23, 4/24, 4/25, 4/27, 4/28, 4/32, 4/44, 4/45, 4/50, 4/59, 4/61

entry: 4/11

root: 4/11, 4/59, 4/61

Tag: 4/16, 4/23, 4/27, 4/28, 4/44, 4/45, 4/50, 4/59, 4/61

implementation use: 1/4, 2/7, 3/4, 3/6, 3/7, 3/12, 3/14, 3/16, 3/17, 3/18, 3/19, 3/20, 3/24, 3/25, 4/13, 4/21, 4/22, 4/26, 4/33, 4/41, 4/42, 4/45, 4/46, 4/47, 4/48

Implementation Use Volume Descriptor: 3/4, 3/6, 3/7, 3/14, 3/16, 3/25

indirect entry: 4/4, 4/11, 4/14, 4/25, 4/27, 4/59, 4/61

information length: 4/10

input: 2/1, 2/9, 3/1, 3/27, 4/1, 4/6, 4/54, 5/1, 5/8

integrity

close: 3/11, 3/24, 4/14, 4/15, 4/45, 4/48

entry: 4/15

open: 3/11, 3/24, 4/14, 4/15, 4/45, 4/48

partition: 4/14, 4/15, 4/25, 4/45

stable: 4/14, 4/15, 4/45

interchange: 1/1, 1/2, 2/1, 2/8, 3/1, 3/27, 4/1, 4/17, 4/52, 4/53, 4/54, 4/57

ISO 2022: 1/2, 1/7, 1/9, 1/10, 4/35

ISO 9660: 1/8, 2/4, 3/18, 4/35, 5/5

ISO/IEC 6429: 1/9, 1/10, 4/35

ISO/IEC 646: 1/5, 1/7, 1/8, 1/9, 1/10, 1/13

ISO/IEC 9945: 1/8, 4/25, 4/26, 4/31, 4/49, 4/56, 4/57

logical block: 3/2, 3/7, 3/10, 3/19, 3/25, 3/28, 4/1, 4/3, 4/5, 4/6, 4/9, 4/10, 4/11, 4/14, 4/16, 4/22, 4/26, 4/28, 4/31, 4/44, 4/46, 4/47, 4/48, 4/50, 5/4

number: 3/10, 4/6, 4/46, 4/47, 4/48

size: 3/2, 3/7, 3/10, 4/16, 4/44, 4/46

unrecorded: 4/6, 4/11

logical sector: 3/1, 3/5, 3/6, 3/8, 3/9, 3/10, 3/13, 3/14, 3/18, 3/20, 3/23, 3/25, 4/1, 4/5

number: 3/6, 3/8, 3/10, 3/18, 3/25

size: 3/6, 3/10, 3/23

logical volume: 3/1, 3/2, 3/7, 3/10, 3/11, 3/19, 3/20, 3/21, 3/22, 3/23, 3/24, 3/25, 4/1, 4/2, 4/3, 4/6, 4/7, 4/18, 4/48, 4/54, 4/57, 4/61

identification: 3/10

Logical Volume Descriptor: 3/1, 3/4, 3/7, 3/10, 3/19, 3/20, 3/23, 3/25, 3/28, 4/1, 4/18

Logical Volume Header Descriptor: 4/2, 4/48

Logical Volume Integrity Descriptor: 3/4, 3/10, 3/23, 4/2

Logical Volume Integrity Sequence: 3/20, 3/23, 3/24

MDU: 5/3, 5/4, 5/5, 5/6, 5/7

medium interchange level: 3/27, 4/54, 4/57

MSB: 4/30, 5/2, 5/3, 5/4, 5/5

notation: 1/1, 1/3, 1/5, 1/6, 2/1, 3/2, 4/3, 5/2

NSR Descriptor: 3/11

numerical value: 1/6, 1/7, 5/2

output: 2/1, 3/1, 4/2, 5/1

padding: 4/8, 4/34

parent

directory: 4/7, 4/22, 4/49

ICB: 4/23, 4/25

partition

number: 3/17, 3/21, 3/28

space: 4/13

Partition Descriptor: 3/1, 3/4, 3/7, 3/16, 3/17, 3/18, 3/20, 3/21, 3/28, 4/2

Partition Header Descriptor: 4/2, 4/14, 4/20

Path Component: 4/8, 4/48, 4/49

pathname: 4/7, 4/8, 4/9, 4/48, 4/49, 4/53

resolved: 4/8, 4/9, 4/53

permission: 4/30, 4/35, 4/36, 4/38

permissions: 4/29

prevailing: 3/7, 3/8, 3/9, 3/10, 4/2, 4/7

Primary Volume Descriptor: 3/4, 3/7, 3/9, 3/12, 3/14, 3/25, 3/27, 3/28, 3/29

RCW: 5/4, 5/5

record: 1/1, 1/3, 4/9, 4/10, 4/28, 4/30, 4/31, 4/50, 4/56, 4/57, 4/58, 5/1, 5/3, 5/4, 5/5, 5/6, 5/7, 5/8

display attributes: 5/1, 5/7

references: 1/2, 5/1

regid: 1/4, 1/12, 1/13, 2/6, 3/12, 3/14, 3/16, 3/17, 3/18, 3/19, 3/20, 3/25, 3/27, 4/17, 4/19, 4/22, 4/23, 4/28, 4/41, 4/42, 4/43, 4/45, 4/46, 4/50, 4/54, 4/55

requirements: 1/1, 2/1, 2/3, 2/9, 3/1, 3/6, 3/27, 3/29, 4/1, 4/6, 4/54, 4/57, 5/1, 5/3, 5/8

Reserve Volume Descriptor Sequence: 3/8, 3/14, 3/15

restrictions: 2/8, 3/9, 3/19, 3/25, 4/8, 4/16, 4/19, 4/26, 4/52, 4/53

rewritable media: 3/4, 4/5, 4/11, 4/14

schema: 1/5, 2/3, 4/6, 4/12, 4/15, 4/52, 4/53, 5/3, 5/4, 5/5, 5/6, 5/7

scope: 1/1, 1/12, 1/13, 2/1, 3/1, 3/14, 3/18, 3/19, 3/20, 3/22, 3/25, 3/27, 4/1, 4/19, 4/22, 4/23, 4/30, 4/38, 4/43, 4/46, 4/54, 5/1

sector: 1/3, 2/1, 2/3, 2/4, 3/1, 3/5, 3/6, 3/8, 3/9, 3/10, 3/13, 3/14, 3/18, 3/20, 3/23, 3/25, 4/1, 4/5, 4/11

blank: 2/3

initial: 2/1, 2/3, 3/1

number: 2/1, 2/3, 3/6, 3/8, 3/10, 3/18, 3/25

sorting: 4/8, 4/26

space

bitmap: 4/4, 4/14, 4/16, 4/20, 4/44

entry: 4/4, 4/14, 4/25, 4/44

map: 4/14

set: 4/14, 4/20

table: 3/25, 4/2, 4/7, 4/14, 4/20

Space Bitmap Descriptor: 4/4, 4/16, 4/44

sparse file: 4/16

symbolic link: 4/7, 4/25

system

originating: 1/2, 3/7, 3/27, 4/30, 4/38, 4/54, 5/8

receiving: 1/2, 3/29, 4/57

tag: 3/3, 3/4, 3/5, 3/12, 3/15, 3/16, 3/17, 3/19, 3/22, 3/23, 3/24, 4/3, 4/4, 4/5, 4/17, 4/19, 4/21, 4/23, 4/27, 4/28, 4/32, 4/33, 4/44, 4/45, 4/50

Terminal Entry: 4/4, 4/11, 4/25, 4/27

Terminating Descriptor: 3/4, 3/23, 4/4, 4/6, 4/19

Terminating Extended Area Descriptor: 2/5, 2/9

time

access: 4/10, 4/28, 4/50

Coordinated Universal Time: 1/11

local: 1/11

zone: 1/11

timestamp: 1/11, 2/6, 3/12, 3/24, 4/17, 4/28, 4/39, 4/40, 4/45, 4/50

unallocated logical sector: 3/9

unallocated Space: 3/4, 3/7, 3/9, 3/22, 3/23, 4/2, 4/4, 4/7, 4/13, 4/14, 4/20, 4/25, 4/44

bitmap: 4/20

entry: 4/4, 4/25, 4/44

Unallocated Space Descriptor: 3/4, 3/7, 3/9, 3/22, 3/23

unallocated volume space: 3/9

unique: 1/3, 2/3, 3/6, 3/10, 4/23, 4/48

version: 2/4, 2/5, 2/6, 3/11, 4/9, 4/49

volume descriptor: 3/7, 3/8

Volume Descriptor Pointer: 3/4, 3/7, 3/8, 3/9, 3/14, 3/15, 3/25

Volume Descriptor Sequence: 3/7, 3/8, 3/9, 3/12, 3/14, 3/15, 3/16, 3/17, 3/19, 3/22, 3/23, 3/25

main: 3/8, 3/15, 3/25

volume identification: 3/9, 3/10

volume recognition: 2/1, 2/3, 2/7, 3/1, 3/11

volume set: 1/2, 1/3, 3/1, 3/7, 3/9, 3/10, 3/12, 3/13, 3/14, 3/21, 3/27, 3/28, 3/29, 4/6, 4/54, 4/56, 4/57

volume space: 3/1, 3/6, 3/7, 3/8, 3/9, 3/17

��

Printed copies can be ordered from:

ECMA�114 Rue du Rhône�CH-1204 Geneva�Switzerland

Fax:	+41 22 849.60.01

Internet:	documents@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as password. This Standard is available from library ECMA-ST as a compacted, self-expanding file in MSWord 6.0 format (file E167-DOC.EXE) and as an Acrobat PDF file (file E167-PDF.PDF). File E167-EXP.TXT gives a short presentation of the Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

�

ECMA

114 Rue du Rhône

CH-1204 Geneva�Switzerland

Fax:	+41 22 849.60.01

Internet:	helpdesk@ecma.ch

This Standard ECMA-167 is available free of charge in printed form and as a file.

See inside cover page for ordering instructions.

�Standard ECMA-167�2nd Edition - December 1994���EMBED MSWordArt.2 \s������Standardizing—Information—and—Communication—Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch�MB- � FILENAME * MERGEFORMAT �Ecma-167.doc� - � PRINTDATE * MERGEFORMAT �02/07/97 11.24�

�Standard ECMA-167�3rd Edition - June 1997���EMBED MSWordArt.2 \s������Standardizing—Information—and—Communication—Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

�Standard ECMA-167�3rd Edition - June 1997���EMBED MSWordArt.2 \s������Standardizing—Information—and—Communication—Systems

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch�� USERINITIALS * MERGEFORMAT �GL� - � FILENAME * MERGEFORMAT �Ecma-167.doc� - � PRINTDATE * MERGEFORMAT �02/07/97 11.24�

�PAGE �vi�

�PAGE �vii�

- � seq Part \c �0�/�PAGE�6� -

- � seq Part \c �0�/�PAGE�13� -

- � seq Part \c �1�/�PAGE�12� -

- � seq Part \c �1�/�PAGE�13� -

- � seq Part \c �2�/�PAGE�10� -

- � seq Part \c �2�/�PAGE�9� -

- � seq Part \c �3�/�PAGE�30� -

- � seq Part \c �3�/�PAGE�29� -

- � seq Part \c �4�/�PAGE�64� -

- � seq Part \c �4�/�PAGE�63� -

- � seq Part \c �5�/�PAGE�8� -

- � seq Part \c �5�/�PAGE�7� -

